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Abstract: 

Bone tissue comes in two different varieties: spongy and compact. The names suggest that the two varieties are 

different in terms of tissue density, or how closely the tissue is packed. Three different cell types are involved in 

maintaining the balance of bones. Osteocytes are mature bone cells, osteoblasts are bone-forming cells, and 

osteoclasts resorb or destroy bone.  

 
 

INTRODUCTION 
Bone tissue is maintained by an equilibrium between osteoblasts and osteoclasts. Osteons or haversian systems 

are tightly packed together to form compact bone. The osteon is made up of concentric rings (lamellae) of 

matrix surrounding a central canal known as the osteonic (haversian) canal. The bone cells (osteocytes), which 

are situated between the rings of matrix, are found in regions known as lacunae. To offer passages in the dense 

matrix, tiny channels (canaliculi) sprout from the lacunae to the osteonic (haversian) canal. The haversian 

systems are packed closely together to resemble a solid mass in compact bone. Blood arteries in the osteonic 

canals run parallel to the long axis of the bone. Through perforating canals, these blood arteries link up with 

vessels on the surface of the bone.  
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Bone that is flexible (cancellous) is less dense and lighter than bone that is rigid. Trabeculae, or plates of bone, 

and bars of bone are found next to tiny, irregular cavities that contain red bone marrow in spongy bone. Instead 

of a central haversian canal, the canaliculi obtain their blood supply from the nearby cavities. The trabeculae 

may appear to be stacked haphazardly, yet they are structured to give maximum strength, much as braces used 

to support a building. The trabeculae of spongy bone align themselves if the direction of stress changes and 

follow the lines of stress. Vertebrates are creatures with a spinal column or backbone, including humans. They 
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are supported by a strong internal framework that is built around a noticeable spine. The human skeletal system, 

which makes up 20% of the body weight, is made up of bones, cartilage, ligaments, and tendons. Muscles and 

bones collaborate as basic mechanical lever systems to create body movement.More calcium is found in bones 

than any other organ. Large quantities of calcium salts, the most significant of which is calcium phosphate, are 

present in the intercellular matrix of bone.Calcium is released from the bones when blood calcium levels fall 

below the normal range to ensure that there is a sufficient supply for metabolic requirements. The extra calcium 

is deposited in the bone matrix when blood calcium levels rise. Almost continually, the dynamic process of 

releasing and storing calcium occurs.The red marrow of the bones is where blood cells are primarily formed 

during the process of hematopoiesis.Red marrow is located in the bone cavities of babies. It is largely replaced 

with yellow marrow as we mature. Review: Membranes, Tissues, and CellsWhat we have discovered from cells, 

tissues, and membranes is as follows: 

 

 
 

A cell essentially consists of three components: the cell membrane, the nucleus, and the cytoplasm in 

between.,The genetic material that makes up a cell's nucleus also controls how that cell behaves. It establishes 

the fundamental makeup of the cell and how it will operate.A cell's cytoplasm is where all of the processes for 

cell division, growth, and replication take placeA collection of cells with similar structures and functions is 

referred to as a tissue. Epithelial, connective, muscular, and nerve tissues are some of the main categories of 

bodily tissues.All bodily surfaces are covered by epithelial tissues, which also line body cavities and hollow 

organs. 

Our bodies' living bones use oxygen and release waste products throughout metabolism. They have functional 

tissues that require nutrients, blood flow, and the ability to remodel or alter shape in response to changes in 

mechanical stress. 
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The skeleton, which is made up of bones, acts as a strong framework to support and shield the body's soft 

organs.The body is supported by the skeleton as it resists the pull of gravity. When standing, the trunk is 

supported by the massive bones of the lower limbsMembranes 

Body membranes are incredibly thin tissue sheets that line body cavities, cover organs inside of hollow organs, 

and cover the body's surface. They can be divided into connective tissue membrane and epithelial membrane. 

Epithelial tissue and the connective tissue to which it is linked make up epithelial membranes. The mucous 

membrane and the serous membrane are the two primary varieties of epithelial membranes. 

MucousMembranes 

The epithelial membranes that make up mucous membranes are made of epithelial tissue that is joined to a loose 

connective tissue beneath. The body cavities that open to the outside are lined with these membranes, also 

known as mucosae. Mucous membranes line the inside of the digestive tract. The reproductive, excretory, and 

respiratory tracts are more examples.Body cavities are lined with serous membranes. Mucous MembranesThe 

epithelial membranes that make up mucous membranes are made of epithelial tissue that is joined to a loose 

connective tissue beneath. The body cavities that open to the outside are lined with these membranes, also 

known as mucosae. Mucous membranes line the inside of the digestive tract. The reproductive, excretory, and 

respiratory tracts are more examples.Organs housed in body cavities that don't open up to the outside are 

covered by serous membranes that line the body cavities. The epithelium secretes a thin coating of serous fluid 

that coats serous membranes. When organs in the thoracic or abdominopelvic cavity move against one another 

or the cavity wall, serous fluid lubricates the membrane and lessens friction and abrasion. The names of serous 

membranes are unique. 

Mucous membranes are epithelial membranes made up of epithelial tissue linked to a loose connective tissue 

underneath. These membranes, also known as mucosae, line the bodily cavities that have an external opening. 

Mucous membranes cover the whole digestive system. The respiratory, excretory, and reproductive pathways 

are some further examples. 

 

Serous Membranes 

Body cavities that don't open up to the outside are lined with serous membranes, and those organs are protected 

by those membranes. A thin layer of serous fluid, which is secreted by the epithelium, coats serous membranes. 

The membrane is lubricated by serous fluid, which also lessens friction and abrasion when the organs in the 

thoracic or abdominopelvic cavity move in contact with one another or the cavity wall. Serous membranes are 

known by unique names. Tissue Membranes Ive 

Only connective tissue is present in connective tissue membranes. Meninges and synovial membranes fall 

within this category. 

Membranes of the joint 

Connective tissue membranes called synovial membranes border the spaces of joints that can move freely, 

including the shoulder, elbow, and knee. They line cavities that do not open to the outside, much like serous 

membranes. These membranes lack an epithelial layer, in contrast to serous membranes. Synovial membranes 

produce synovial fluid into the joint cavity, which lubricates the bone ends' cartilage and allows for friction-free, 

fluid motion. 

Meninges  

The meninges are the connective tissue that covers the brain and spinal cord within the dorsal cavity. They 

safeguard these important buildings. Meninges The meninges are the connective tissue that covers the brain and 

spinal cord within the dorsal cavity. They safeguard these  

Conclusion: It is well known that canalicular fluid flow plays a crucial role in bone metabolism and activity, as 

well as in facilitating efficient cell-to-cell communication. Bone canaliculi are tiny canals that run through the 

dense matrix of the bone, containing the dendrites of osteocytes, and filled with an ion-rich interstitial fluid. 

Fluid flow and electrochemical phenomena coexist in very tiny (a few hundred nanometers in diameter) canals. 

In our earlier research, we created a multi-scale model that takes into consideration coupled chemical and 

hydraulic transport in the canalicular network. Unfortunately, modern experimental approaches can only really 

access a small portion of the physical and geometrical data that the model needs. This study's objective was to 

quantitatively evaluate the impact of the physical and material 
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