
Volume-09 Issue 05, May-2025 ISSN: 2456-9348

 Impact Factor: 8.232

International Journal of Engineering Technology Research & Management

Published By:

https://www.ijetrm.com/

IJETRM (http://ijetrm.com/) [463]

DYNAMIC API URL GENERATION SYSTEM

Hemalatha V1

Assistant Professor, Department of Computer Science and Engineering, N.S.N College of Engineering

and Technology, Tamilnadu, India.

Gandhiraja S1, Keerthi V2, Naveenhasan S3

PG Student, Department of Computer Science and Engineering, N.S.N College of Engineering and

Technology, Tamilnadu, India.

ABSTRACT

Low-code platforms and automated development tools have become more popular as a result of the increasing

demand for quick and effective backend development. This paper presents a Dynamic API URL Generation

System that enables users to create fully functional CRUD APIs for MongoDB databases without writing any

backend code, regardless of their level of technical expertise. The system dynamically generates Express.js-

based RESTful APIs, including route definitions, data models, and real-time documentation, by letting users

enter a custom schema through an easy-to-use interface. Constructed with a modular architecture utilizing

Node.js, Express.js, React.js, and MongoDB, the platform facilitates secure access through JWT authentication,

in-browser API testing, and scalable, multi-user API generation. To guarantee reliable and traceable operations,

it also incorporates automated logging and error handling. The entry barrier is greatly reduced by the suggested

system.

Keywords:

Dynamic API Generation, Low-Code Development, CRUD Operations, Schema Automation, JWT

Authentication, API Logging.

 INTRODUCTION

By allowing users to define schemas via a web interface and create RESTful API endpoints without knowing

any code, the Dynamic API URL Generation System streamlines backend development. The MERN stack

(MongoDB, Express, React, and Node.js) upon which it is built guarantees secure authentication through JWT,

error validation with logging, and real-time operations for smooth database interactions. As low-code/no-code

solutions gain popularity as a means of accelerating application scalability, the system improves accessibility for

non-programmers while streamlining workflows for seasoned developers by streamlining CRUD operations and

incorporating metadata handling.

OBJECTIVES

The Dynamic API URL Generation System makes it easier for developers and non-developers to manage

database operations by enabling users to create fully functional CRUD APIs without writing code. It allows for

schema-based customization with flexible field names and data types by automating the creation of RESTful

APIs based on user-defined MongoDB schemas. JWT authentication provides secure access, and a user-friendly

interface driven by React.js makes it easier to define schemas, preview APIs, and conduct in-browser testing.

The system supports real-time API testing through an embedded test environment by dynamically generating

API endpoint URLs based on schema inputs and MongoDB URIs. With its scalable Node.js and Express.js

architecture, it integrates extensive logging and monitoring for auditing, analytics, and debugging, and

guarantees modularity for multi-user environments.

METHODOLOGY

The Dynamic API URL Generation System is designed with a modular approach, making it easy to integrate,

secure, and scale. It kicks off with a component-based design, using React.js for the frontend, Node.js with

Express for the backend, MongoDB for data storage, and JWT for secure access. By adopting a RESTful API

https://www.ijetrm.com/
http://ijetrm.com/

Volume-09 Issue 05, May-2025 ISSN: 2456-9348

 Impact Factor: 8.232

International Journal of Engineering Technology Research & Management

Published By:

https://www.ijetrm.com/

IJETRM (http://ijetrm.com/) [464]

model, it ensures smooth interactions with modern web tools. The authentication system is robust, utilizing

bcrypt for password hashing and JWT tokens to guarantee that only authorized users can create and access APIs.

Users can define collection names, fields, and data types through a schema definition interface, while the

backend checks inputs before dynamically generating Mongoose models and CRUD endpoints. These routes

POST, GET, PUT, DELETEare created on the fly with Express.js, so there's no need to restart the server. Each

user is linked to their own MongoDB instance or Atlas URI, which provides data isolation and customization.

Plus, a logging and analytics module tracks API request details like HTTP method, endpoint URL, status code,

timestamp, and user ID, making it easier to audit, debug, and optimize.

 A real-time preview and testing environment showcases all generated API endpoints on a user dashboard,

allowing for live JSON response validation and sample data entry to verify functionality. The system is

deployed on scalable cloud platforms like AWS or Heroku, ensuring it remains highly available and performs

well. With continuous integration practices and updates driven by user feedback, the system stays efficient,

making API generation simpler, more secure, and ready for future enhancements.

Figure 1 Dynamic API generation working flowchart

RESULTS AND DISCUSSION

The Dynamic API URL Generation System went through extensive testing to ensure it could effectively

automate backend development, with a strong emphasis on usability, performance, scalability, and reliability. It

was set up in a controlled test environment where several users could create and manage their own custom

schemas. Each schema was designed to dynamically generate RESTful API endpoints, which could be accessed

through both the built-in interface and external tools like Postman. The CRUD routes POST, GET, PUT,

DELETE were accurately mapped to the user-defined schema structures, guaranteeing standardized JSON

responses and proper error handling with HTTP status codes like 400 for bad requests and 404 for missing

resources.

Usability testing revealed that even non-technical users found it easy to define schemas and interact with APIs

using the user-friendly React.js frontend. Features like real-time validation and API previews significantly

improved the user experience, while the system efficiently managed simultaneous requests from multiple users,

showcasing its scalability and ability to handle concurrent processing. Performance testing on the backend

https://www.ijetrm.com/
http://ijetrm.com/

Volume-09 Issue 05, May-2025 ISSN: 2456-9348

 Impact Factor: 8.232

International Journal of Engineering Technology Research & Management

Published By:

https://www.ijetrm.com/

IJETRM (http://ijetrm.com/) [465]

showed that Node.js and Express.js could support dynamic route generation without noticeable delays, and

Mongoose facilitated smooth interactions with the database. Schema constraints were enforced, and real-time

database updates were accurately reflected across different sessions.

For security, the system implemented JWT-based authentication to prevent unauthorized access to API

endpoints, ensuring that user data remained isolated through server-side middleware protections. The logging

and analytics modules effectively captured essential metadata, including timestamps, request types, and status

codes, making audits and debugging a breeze. However, the current version is missing features like rate

limiting, role-based access control, and an analytics dashboard, which are on the roadmap for future updates.

ACKNOWLEDGEMENT

The authors want to take a moment to sincerely thank their project guide and faculty members for their

invaluable guidance, insightful feedback, and unwavering support throughout this journey. Their expertise and

mentorship have been crucial in shaping the direction of this research and fine-tuning its implementation.

We also want to express our gratitude to our friends and teammates, whose collaboration, discussions, and

encouragement have played a significant role in moving this project forward. Their readiness to brainstorm

ideas and offer constructive feedback has been key in overcoming challenges and improving the quality of our

research.

CONCLUSION

The Dynamic API URL Generation System makes backend automation a breeze by letting users create CRUD

endpoints without any coding. It utilizes MongoDB URI and schema definitions, and it’s built on Node.js,

Express.js, and Mongoose. This setup allows for real-time API deployment while keeping things secure with

JWT authentication and password encryption.

That said, it does have its limitations: it only works with MongoDB, doesn’t support SQL, and has some

restrictions on custom validations, schema management, and dashboards. You might notice a dip in performance

when handling large-scale dynamic requests, and features like rate limiting, API versioning, and role-based

access control are still in the works.

REFERENCES

1. M. Muehlbauer and P. A. Kirschner, "Cloud Computing and Service-Oriented Architectures: Concepts

and Applications," IEEE Software, vol. 37, no. 3, pp. 68-75, 2020.

2. J. Chapin, "Serverless computing: Economic and technical challenges," IEEE Cloud Computing, vol. 7,

no. 2, pp. 34-43, 2020.

3. S. Jung and Y. Park, "API Security: Challenges and Solutions," IEEE Transactions on Network and

Service Management, vol. 17, no. 4, pp. 2201-2210, 2020.

4. M. Jefferson, "Serverless Architectures on AWS: With Examples Using AWS Lambda," IEEE Cloud

Computing, vol. 6, no. 4, pp. 40-49, 2019.

5. A. Smith and E. Grant, "Understanding Cloud Computing: A Comprehensive Guide," IEEE

Transactions on Cloud Computing, vol. 8, no. 5, pp. 1503-1515, 2018.

https://www.ijetrm.com/
http://ijetrm.com/

