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ABSTRACT 

This study investigates the effect of the damping coefficient on the transverse displacement and rotation of a 

prestressed shear beam resting on an elastic foundation and subjected to a moving load at a constant velocity. The 

governing equations are coupled second-order partial differential equations. To facilitate the analysis, the finite 

Fourier series method was utilized, converting these equations into a set of coupled second-order ordinary 

differential equations. The resulting equations that characterize the motion of the beam-load system were then 

solved using Laplace transformation alongside convolution theory to derive the solutions. Analyses were 

performed to assess the effect of the damping coefficient on both the transverse displacement and rotation of 

prestressed shear beams of different lengths when subjected the moving load at different velocities respectively. 

Furthermore, the research investigates the effect of the damping coefficient on the critical velocities of the vibrating 

system. The results indicate that the transverse displacement and rotation of the beam significantly decrease as the 

damping coefficient increases. Additionally, it was observed that an increase in the damping coefficient 

corresponds to increase in the critical velocity, suggesting a more stable dynamic system. Practically, this connotes 

the significance of the damping coefficient in enhancing the dynamic stability of the beam under the influence of 

a moving load. 
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INTRODUCTION   

The analysis of vibration induced by moving loads in various applications of vibration and structural dynamics has 

been the focus of extensive research over the past century. This study continues to be of significant interest due to 

the widespread applications of structure-moving load interactions in fields such as Civil, Mechanical, Aerospace, 

and Structural Engineering, among others. In structural dynamics, moving loads are defined as loads that change 

position over time on a structure. These dynamic loads can induce vibrations and alter stress within the structure, 

necessitating thorough analysis and design [1-3]. Real-life examples of moving-load-induced vibrations include 

those experienced in interactions between vehicles and bridges, human interactions with footbridges, railway track 

dynamics, cranes operating on rails, and high-speed machining processes. Therefore, a comprehensive 

understanding of structure-moving load interactions is essential for the design of safe and effective structures in 

practical scenarios. A significant amount of literature has been devoted to exploring moving load problems, with 

numerous researchers investigating how the complex interactions between beams or beam-like structural elements 

and the loads traversing them affect the dynamic behavior of these structures [4-7]. 

Furthermore, beams that are supported by elastic foundations, which are often represented as beams on springs, 

are commonly analyzed in various structures such as buildings, bridges, roads, pavements, railway tracks, and 

many other related constructions. Elastic foundations illustrate the soil's capacity to deform under load and 

distribute stresses, thereby preventing excessive settlement or structural damage. They play a vital role in 

engineering by enabling accurate predictions of structural behavior under load, particularly in scenarios where 
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structures interact with soil or other supporting materials. These models simplify the intricate soil-structure 

interaction, facilitating efficient analysis of deflections, stresses, and stability across various engineering 

applications. The study of vibrations in beam-like structures resting on elastic foundations due to moving loads is 

of considerable technological importance and it has been extensively studied. Notably, Ajijola [8] studied the 

dynamic response to moving load of prestressed damped shear beam resting on bi-parametric elastic foundation. 

Ogunbamike [9] considered the dynamic behavior of a simply supported Timoshenko beam on a Winkler 

foundation subjected to a moving uniformly distributed load. Additionally, Clastornik et al. [10] conducted 

research on the dynamic analysis of elastic beams supported by a variable Winkler elastic foundation. Similarly, 

Ogunbamike and Oni [11] investigated the dynamic characteristics of a non-prismatic Rayleigh beam with general 

boundary conditions, supported by a Vlasov elastic foundation and subjected to partially distributed moving masses 

with varying velocities. They employed the Generalized Galerkin method to derive closed-form solutions for this 

category of dynamic problems. Also, Rajib et al. [12] explored the dynamic response of a beam under both moving 

loads and moving masses, supported by a Pasternak foundation.  

Additionally, engineers frequently introduce artificial stresses into structures or systems to enhance their 

performance. This technique, known as pre-stressing, offers significant advantages, such as minimizing tensile 

stresses and reducing the risk of flexural cracking or bending during operational conditions. This method is vital 

in structural engineering and mechanics, as it increases the load-bearing capacity and improves the durability, 

strength, and stability of structures and machinery. As a result, extensive research has focused on the vibrations of 

pre-stressed beams under moving loads. For instance, Ajijola [13] considered Axial force influence on transverse 

displacement and rotation under moving load of elastically supported damped shear beam. Jimoh, Oni and Ajijola 

[14] examined how variable axial forces affect the deflection of thick beams under distributed moving loads, 

calculating the transverse displacement for various time intervals and analyzing the results. Similarly, Jimoh, 

Ogunbamike, and Ajijola [15] explored the dynamic response of non-uniformly prestressed thick beams under 

distributed moving loads at different velocities. They employed a technique based on Galerkin’s method, utilizing 

the series representation of the Heaviside function to transform the equations, which were then simplified using 

Strubles asymptotic method and solved through Laplace transformation techniques combined with convolution 

theory. Their findings indicated that the moving distributed force does not serve as an upper bound for accurately 

solving the moving distributed mass problem. Furthermore, they discovered that increasing certain structural 

parameters leads to a reduction in the response amplitudes of non-uniformly prestressed thick beams under moving 

distributed loads. Ogunbamike [16] also investigated the dynamic response of a Timoshenko beam supported by 

an elastic foundation and subjected to a harmonic moving load. The technique of modal analysis (MA) was utilized 

to derive a closed-form solution for this category of dynamical systems. A comprehensive examination of the 

influence of axial force and foundation parameters on the dynamic behavior of the beams was conducted and 

thoroughly documented. 

In most of the studies in the literature examined, the influence of damping on the vibrations of dynamic systems is 

scanty. An undamped system is assumed to oscillate freely with a constant amplitude indefinitely. However, in 

reality, this is not the case; every system that has mass and elasticity can oscillate, which leads to energy dissipation 

from the system. Thus, the energy dissipation from a vibrating or oscillating system, which effectively reduces or 

halts its motion, is known as damping. Damping holds significant importance in structural and construction 

engineering as it safeguards systems from excessive vibrations and potential damage, facilitating smooth and 

efficient operation. Notable contributors in this area include Crandall [17] who examined the role of damping in 

specific areas where minimal damping plays a crucial role in influencing a system's dynamic behavior. Mousa and 

Reza [18] proposed an innovative approach for the free vibrational synthesis of a cracked cantilever beam with a 

breaking crack, considering the impact of distributed structural damping. Robin and Rana [19] investigated the 

vibrations of isotropic and orthotropic damped plates with varying thicknesses resting on a foundation. Similarly, 

Ogunbamike [20] analyzed the effects of damping on the transverse motions of axially loaded beams subjected to 

distributed moving loads. This study focuses on the dynamic analysis of a clamped-clamped Rayleigh beam under 

moving distributed loads, employing a solution technique based on the generalized finite integral transform and a 

modification of Struble’s asymptotic technique. Additionally, Famuagun [21] examined the influence of damping 
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coefficients on the dynamic response of Rayleigh beams supported by a bi-parametric elastic foundation when 

subjected to moving distributed masses.  

It is pertinent to remark that, despite wide-ranging researches focused on the dynamic behavior of beams subjected 

to moving loads, studies on damped shear beams have been exclusively circumscribed in the existing literature. 

Consequently, considering the great impact of damping on the dynamic behavior of beams and other similar 

structural elements, this present study therefore critically examines the effect of damping coefficient on the 

transverse displacement, rotation and critical velocity of a simply supported prestressed shear beam when traversed 

by a moving load traveling at a constant velocity.  

 

OBJECTIVES   

The specific objectives of this study are to; 

(i) obtain the analytical solution of the governing coupled second order partial differential equations of the 

of a simply supported prestressed shear beam resting on bi-parametric elastic foundation when it is 

subjected to a moving load traveling at a constant velocity and 

(ii) classify the effect of damping coefficient on the transverse displacement, rotation and critical velocity of 

the vibrating system. 

 

METHODOLOGY  

  

PROBLEM STATEMENT   

The theory of shear beams is a vital aspect of structural engineering, concentrating on beams where shear 

deformation is significant. The shear beam model is typically defined by a pair of coupled partial differential 

equations that involve two dependent variables: the transverse displacement of the cross-section relative to the 

neutral axis and rotation of the cross section measured about the neutral axis. The equations governing the 

transverse displacement and rotation of shear beam under the action of moving load are based on the following 

assumptions [1]: 

(i) The material is linearly elastic and the beam is homogeneous at any cross-section (prismatic) 

(ii) The x - y plane is the principal plane. 

(iii) There is an axis of the beam that undergoes no extension or contraction. The x-axis is located along this 

neutral axis. 

(iv) Plane section remains plain after bending but is no longer normal to the longitudinal axis. 

(v) The effect of shear deformation is considered. 

 

 

MATHEMATICAL MODEL   
The governing equations of motion describing the transverse displacement 𝑉(𝑥, 𝑡) and rotation ɸ(𝑥, 𝑡) of a shear 

beam when subjected to a moving load traveling at a constant velocity are formulated as coupled second order 

partial differential equations given by [13]: 

 

𝑀
𝜕2𝑉(𝑥, 𝑡)

𝜕𝑡2
 +  

𝜕

𝜕𝑥
[𝐾∗𝐺∗𝐴 (ɸ(𝑥, 𝑡) −

𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
 )] = P∗(𝑥, 𝑡) 

(1) 

 

𝜕

𝜕𝑥
( 𝐸𝐼

𝜕ɸ(𝑥, 𝑡)

𝜕𝑥
) − 𝐾∗𝐺∗𝐴 (ɸ(𝑥, 𝑡)  −  

𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
 ) = 0 (2) 

    

where 𝑀 is the mass per unit length of the beam, 𝐾∗ is the shear correction factor, 𝐺∗ is the shear parameter of the 

beam, 𝐴 is the cross-sectional area of the beam, 𝐸 is the Young modulus of elasticity of the beam material, I is the 

https://ijetrm.com/
http://ijetrm.com/


Volume-09 Issue 06, June-2025                                                                                                ISSN: 2456-9348 

                                                                                                                                                   Impact Factor: 8.232 

 

 

 
International Journal of Engineering Technology Research & Management 

(IJETRM) 

https://ijetrm.com/ 

 

IJETRM (http://ijetrm.com/)   [500]   

 

 

moment of inertia, EI is the flexural stiffness / rigidity, x is the spatial coordinate, t is the time coordinate and 

P∗(𝑥, 𝑡) is the moving load acting on the beam per unit length.  

The relationship between the foundation reaction 𝐹∗(𝑥, 𝑡) and transverse displacement 𝑉(𝑥, 𝑡) is given by   

   𝐹∗(𝑥, 𝑡) = 𝐾𝑉(𝑥, 𝑡) − 𝐺
𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
 

(3) 

 

where 𝐾 and 𝐺 are two parameters of the foundation model. Specifically, 𝐾 is the Foundation Stiffness and 𝐺 is 

the Shear Modulus.  

In this study, it is assumed that the load function P∗(𝑥, 𝑡) is given in the form 

  

 𝑃∗(𝑥, 𝑡) = 𝑃0𝛿(𝑥 − 𝑐𝑡).     (4) 

 

𝛿(·) is the well-known Dirac delta function with the property.  

∫ 𝜕(𝑥 − 𝑐𝑡)𝑓(𝑥)𝑑𝑥
𝑘1

𝑘0

= { 0,   𝑓𝑜𝑟  𝑐𝑡 < 𝑘0 < 𝑘1,     𝑓(𝑐𝑡),   𝑓𝑜𝑟  𝑘0 < 𝑐𝑡 < 𝑘1,     1,   𝑓𝑜𝑟   𝑘0 < 𝑘1 < 𝑐𝑡.     
(5) 

 

It is remarked here that the beam under consideration is assumed to have simple support at both ends 𝑥 =  0 and 

𝑥 =  𝐿. Thus, boundary conditions are given as  

 
𝑉(0, 𝑡) = 𝑉(𝐿, 𝑡) = 0,           

𝜕𝑉(0, 𝑡)

𝜕𝑥
=

𝜕𝑉(𝐿, 𝑡)

𝜕𝑥
= 0   ɸ(0, 𝑡) = ɸ(𝐿, 𝑡) = 0,

𝜕ɸ(0, 𝑡)

𝜕𝑥
=

𝜕ɸ(𝐿, 𝑡)

𝜕𝑥
= 0 

(6) 

and the initial conditions are given as 

 
𝑉(0, 𝑥) = 0 =

𝜕𝑉(𝑥, 0)

𝜕𝑡
, ɸ(0, 𝑥) =  0 =

𝜕ɸ(𝑥, 0)

𝜕𝑡
 

                     

(7) 

Now, introducing damping and axially prestressed parameters and in view of (3) and (4), after some 

simplifications and re-arrangements, equations (1) and (2) become 

𝜕

𝜕𝑥
[𝐾∗𝐺∗𝐴 (ɸ(𝑥, 𝑡) −

𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
 )]  +  𝑀

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑡2
− 𝑁0

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
− 𝐶0

𝜕𝑉(𝑥, 𝑡)

𝜕𝑡
 + 𝐾𝑉(𝑥, 𝑡) − 𝐺

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2

= 𝑃0𝛿(𝑥 − 𝑐𝑡) 

(8) 

 

and 

𝜕

𝜕𝑥
( 𝐸𝐼

𝜕ɸ(𝑥, 𝑡)

𝜕𝑥
) − 𝐾∗𝐺∗𝐴 (ɸ(𝑥, 𝑡)  −  

𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
 ) = 0 

(9) 

 

where 𝑁0 is the axial force and  𝐶0 is the coefficient of damping per unit length of the beam. 

Hence, (8) 𝑎𝑛𝑑(9)  are the second order partial differential equations governing the flexural motion of an 

elastically supported prestressed shear beam when subjected to a moving load traveling at a constant velocity. 

 

SOLUTION PROCEDURES 

The shear beam examined in this study is both finite and uniform. In order to obtain the analytical solution for the 

initial boundary value problem in equations (8) and (9), we employ the finite Fourier transformation method 

alongside the Laplace Transform. Subsequently, we present the following definitions and theorem [13]. 

Definition 1: The finite Fourier sine transform 𝑤(𝑛, 𝑡) of a function 𝑊(𝑥, 𝑡) is defined as 
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𝑤(𝑛, 𝑡) = ∫ 𝑊(𝑥, 𝑡) 𝑠𝑖𝑛 
𝑛𝜋𝑥

𝑙
 𝑑𝑥

𝑙

0

  
(10) 

 

and the inverse transform is 

    𝑊(𝑥, 𝑡) =
2

𝑙
∑ 𝑤(𝑛, 𝑡) 𝑠𝑖𝑛

𝑛𝜋𝑥

𝑙
 𝑑𝑥.     

∞

𝑛=1

  
(11) 

 

Definition 2: The finite Fourier cosine transform 𝑤0(𝑛, 𝑡) of a function 𝑊0(𝑥, 𝑡) is defined as 

    𝑤0(𝑛, 𝑡) = ∫ 𝑊0(𝑥, 𝑡) 𝑐𝑜𝑠
𝑛𝜋𝑥

𝑙
 𝑑𝑥

𝑙

0

    (12) 

and the inverse transform is 

      𝑊0(𝑥, 𝑡) =
2

𝑙
∑ 𝑤0(𝑛, 𝑡) 𝑐𝑜𝑠

𝑛𝜋𝑥

𝑙
 𝑑𝑥.  

∞

𝑛=1

  
(13) 

 

Definition 3: The Laplace transform 𝐹(𝑠) of a function 𝑓(𝑡) is defined as  

      𝐿(𝑓(𝑡)) = 𝐹(𝑠) = ∫ 𝑓(𝑡) 𝑒−𝑠𝑡𝑑𝑡 .
∞ 

0

  
(14) 

 

Theorem 1: The convolution theorem states that  

      𝐿−1{𝐹(𝑠)𝐺(𝑠)} =  𝐹(𝑠) ∗ 𝐺(𝑠) = ∫ 𝑓(𝑡 − 𝑢)𝑔(𝑢)𝑑𝑢.
𝑡 

0

 
(15) 

 

where 𝐹(𝑠) and 𝐺(𝑠) are the Laplace transforms of 𝑓(𝑡) and 𝑔(𝑡) respectively.    

Consequently, applying (10) and (12) to the governing equations (8) and (9) respectively, along with the property 

of the Dirac delta function as stated in (5), we obtain 

∂2𝑉(𝑛, 𝑡)

∂𝑡2
 + 𝜇1

∂𝑉(𝑛, 𝑡)

∂𝑡
+ 𝜇2𝑉(𝑛, 𝑡) − 𝜇3

∂ɸ(𝑛, 𝑡)

∂𝑥
=  𝑄1 𝑠𝑖𝑛 𝜃𝑛 𝑡 

(16) 

 

and 

ɸ(𝑛, 𝑡) =  𝜇0𝑉(𝑛, 𝑡)     (17) 

 

where   

𝜇1 = −
𝐶0

𝑀
,   𝜇2 = (

𝑛π

𝑀𝐿
)

2
(𝑁0 + 𝐺) −

𝐾

𝑀
,    𝜇3 = (

𝑛π

𝑀𝐿
) 𝐾∗𝐺∗𝐴, 

   𝑄1 =  
𝑃0

𝑀
,     𝜃𝑛 =

𝑛𝜋𝑐

𝐿
,     𝜇0 =

𝑛π

𝐿
𝐾∗𝐺∗𝐴

𝐸𝐼(
𝑛π

𝐿
)

2
+ 𝐾∗𝐺∗𝐴

 

Now putting (17) into (16), we have 
 

 

 

 

https://ijetrm.com/
http://ijetrm.com/


Volume-09 Issue 06, June-2025                                                                                                ISSN: 2456-9348 

                                                                                                                                                   Impact Factor: 8.232 

 

 

 
International Journal of Engineering Technology Research & Management 

(IJETRM) 

https://ijetrm.com/ 

 

IJETRM (http://ijetrm.com/)   [502]   

 

 

∂2𝑉(𝑛, 𝑡)

∂𝑡2
 + 𝜇1

∂𝑉(𝑛, 𝑡)

∂𝑡
+ 𝜇2𝑉(𝑛, 𝑡) − 𝜇3

∂

∂𝑥
(𝜇0𝑉(𝑛, 𝑡)) =  𝑄1 𝑠𝑖𝑛 𝜃𝑛 𝑡 

(18) 

 

The term involving the derivative with respect to 𝑥 in (18) vanishes as 𝑉(𝑛, 𝑡) is a function of 𝑡 alone. Following 

some simplifications and re-arrangements, we obtain 

𝑉𝑡𝑡(𝑛, 𝑡) + 𝜇1𝑉𝑡(𝑛, 𝑡) + 𝜇4𝑉(𝑛, 𝑡) = 𝑄1 𝑠𝑖𝑛 𝜃𝑛 𝑡    (19) 

 

where   

𝜇4 = 𝜇2 − 𝜇0𝜇3 

Now, subjecting (19) to Laplace transformation (14), namely  

  ℒ(𝑓(𝑡)) = F(s) = ∫ 𝑓(𝑡) 𝑒−𝑠𝑡𝑑𝑡
∞ 

0

     
(20) 

 

where 𝑠 is the Laplace parameter. In view of (20), (19) becomes 

  𝑠2�̃�(𝑛, 𝑠) + 𝜇1𝑠�̃�(𝑛, 𝑠) + 𝜇4�̃�(𝑛, 𝑠) = 𝑄1 [
𝜃𝑛

𝑠2 + 𝜃𝑛
2 ] 

(21) 

 

After simplification and rearrangement, we obtain the simple algebraic equation given by 

�̃�(𝑛, 𝑠) = 𝑄1 [
1

𝑠2 + 𝜇1𝑠 + 𝜇4

 ] [
𝜃𝑛

𝑠2 + 𝜃𝑛
2 ] 

(22) 

 

which is further simplified to give   

�̃�(𝑛, 𝑠) = 𝑄1 [
1

(𝑠 + 𝜇5)2 + 𝛾2
 ] [

𝜃𝑛

𝑠2 + 𝜃𝑛
2 ] 

(23) 

 

where 

𝛾2 = 𝜇4 − (𝜇5)2,    𝜇5 = (
𝜇1

2
) (24) 

 

At this juncture, in order to obtain the Laplace inversions of (23), we set 

𝐹(s) = [
1

(𝑠 + 𝜇5)2 + 𝛾2
 ] 

 

 
and  

𝐺(s) = [
𝜃𝑛

𝑠2 + 𝜃𝑛
2 ] 

so that the Laplace inversion of (23) is the convolution of 𝐹(s) and 𝐺(s) defined by (15) namely 

𝐹(𝑠) ∗ 𝐺(𝑠) = ∫ 𝑓(𝑡 − 𝑢)𝑔(𝑢)𝑑𝑢
𝑡 

0

.    
(25) 

 

Noting that  

ℒ−1[𝐹(s)] =
1

𝑝
 exp  (−𝜇5𝑡) sin(𝛾𝑡) 

(26) 

 

and  

ℒ−1[𝐺(s)] = sin(𝜃𝑛𝑡) (27) 

 
Now using (26) and (27) in (25), (23) becomes  
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  𝑉(𝑛, 𝑡) =
𝑄1𝑒− 𝜇5𝑡

𝛾(𝜔1 − 𝜔0)(𝜔2 − 𝜔0)
{𝜔2[𝛾𝑒  𝜇5𝑡 𝑠𝑖𝑛 𝜃𝑛 𝑡 − 𝜃𝑛𝑠𝑖𝑛 𝛾 𝑡]  

+ 𝜔0[𝛾𝑒  𝜇5𝑡 𝑠𝑖𝑛 𝜃𝑛 𝑡 +  𝜃𝑛𝑠𝑖𝑛 𝛾 𝑡]                                                
−  𝜇1𝛾𝜃𝑛[𝑒  𝜇5𝑡 𝑐𝑜𝑠 𝜃𝑛 𝑡 −  𝑐𝑜𝑠 𝛾 𝑡]} 

    

(28) 

 

 

 

where,        

𝜔1 = (𝛾 + 𝜃𝑛)2,   𝜔2 = (𝛾 −  𝜃𝑛)2,   𝜔0 = −(𝜇5)2 

Thus, in view of (11), one obtains 

 𝑉(𝑥, 𝑡) =
2

𝐿
∑  

∞

𝑛=1

𝑄1𝑒− 𝜇5𝑡

𝛾(𝜔1 − 𝜔0)(𝜔2 − 𝜔0)
{𝜔2[𝛾𝑒  𝜇5𝑡 𝑠𝑖𝑛 𝜃𝑛 𝑡 − 𝜃𝑛𝑠𝑖𝑛 𝛾 𝑡]  + 𝜔0[𝛾𝑒  𝜇5𝑡 𝑠𝑖𝑛 𝜃𝑛 𝑡 + 𝜃𝑛𝑠𝑖𝑛 𝛾 𝑡]  

−  𝜇1𝛾𝜃𝑛[𝑒  𝜇5𝑡 𝑐𝑜𝑠 𝜃𝑛 𝑡 − 𝑐𝑜𝑠 𝛾 𝑡]}𝑠𝑖𝑛
𝑛π𝑥

𝑙
    

(29) 

 

which represents the transverse displacement of an elastically supported prestressed shear beam when subjected 

to moving load traveling at a constant velocity. 

Now, using (29) in (17), we have 

 ɸ(𝑛, 𝑡) =
𝜇0𝑄1𝑒− 𝜇5𝑡

𝛾(𝜔1 −  𝜔0)(𝜔2 − 𝜔0)
{𝜔2[𝛾𝑒  𝜇5𝑡 𝑠𝑖𝑛 𝜃𝑛 𝑡 −  𝜃𝑛𝑠𝑖𝑛 𝛾 𝑡]  + 𝜔0[𝛾𝑒  𝜇5𝑡 𝑠𝑖𝑛 𝜃𝑛 𝑡 +  𝜃𝑛𝑠𝑖𝑛 𝛾 𝑡]

− 𝜇1𝛾𝜃𝑛[𝑒  𝜇5𝑡 𝑐𝑜𝑠 𝜃𝑛 𝑡 −  𝑐𝑜𝑠 𝛾 𝑡]}    

(30) 

 

Similarly, in view of (13), one obtains 

ɸ(𝑥, 𝑡) =   
2

𝐿
∑  

∞

𝑛=1

𝜇0𝑄1𝑒− 𝜇5𝑡

𝛾(𝜔1 − 𝜔0)(𝜔2 − 𝜔0)
{𝜔2[𝑒  𝜇5𝑡 𝑠𝑖𝑛 𝜃𝑛 𝑡 − 𝜃𝑛𝑠𝑖𝑛 𝛾 𝑡]  + 𝜔0[𝛾𝑒  𝜇5𝑡 𝑠𝑖𝑛 𝜃𝑛 𝑡 + 𝜃𝑛𝑠𝑖𝑛 𝛾 𝑡]

−  𝜇1𝛾𝜃𝑛[𝑒  𝜇5𝑡 𝑐𝑜𝑠 𝜃𝑛 𝑡 − 𝑐𝑜𝑠 𝛾 𝑡]}𝑐𝑜𝑠
𝑛π𝑥

𝑙
    

(31) 

 

which represents the rotation of an elastically supported prestressed shear beam when subjected to a moving load 

traveling at a constant velocity. 

 

RESULTS AND DISCUSSION  

 

The uniformly prestressed shear beam of lengths (L) = 50m, 55m, 60m and 65m respectively are considered in 

order to illustrate the analysis presented in this study. Similarly, the load is assumed to travel along the beam with 

different load speeds (c) = 40 m/s, 45 m/s, 50 m/s and 55 m/s respectively. The Young modulus of elasticity 𝐸 =
2.10924 × 109𝑁/𝑚2, moment of inertia I = 2.87698×10-3m4, 𝜋 =  22/7, the axial force 𝑁 = 4000𝑁,  foundation 

stuffiness 𝐾 = 4000𝑁/𝑚3,   Shear modulus  𝐺 = 4000𝑁/𝑚3 and the mass per unit length of the beam 𝑀 =
2758.291𝑘𝑔/𝑚. The values of damping coefficient 𝐶o are varied between 0 𝑎𝑛𝑑 300.   

In this present study, three special cases of the effect of damping coefficient 𝐶o on dynamic response of a simply 

supported prestressed shear beam under the action of moving load were investigated. The cases are termed; 

 

1. the effect of damping coefficient 𝐶o on transverse displacement and rotation of a prestressed shear beam when 

the lengths of the beam (L) are 50m, 55m, 60m and 65m respectively, 

2. the effect of damping coefficient 𝐶o on transverse displacement and rotation of a prestressed shear beam when               

the load speeds (c) are 40 m/s, 45 m/s, 50 m/s and 55 m/s respectively and 

3. the effect of damping coefficient 𝐶o on critical velocity. 

 

The transverse displacement V(𝑥, 𝑡) and rotation ɸ(𝑥, 𝑡)  of the beam are calculated and plotted against time t for 

various values of damping coefficient 𝐶o . The results are shown on the various graphs given below.  
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Figures 1 to 8 illustrate the transverse displacement and rotation of a simply supported prestressed shear beam 

subjected to a moving load traveling at a constant velocity, for various values of the damping coefficient 𝐶o, with 

beam lengths (L) of 50m, 55m, 60m, and 65m respectively, while other parameters remain constant. It is evident 

from figures 1 to 8 that as the damping coefficient 𝐶o increases, there is a significant decrease in both the transverse 

displacement and rotation of the beam. Consequently, increase in the value of damping coefficient 𝐶o reduces the 

amplitude of vibrations and oscillations of the vibrating beam. Practically speaking, the damping mechanisms 

absorb and effectively dissipate energy that would otherwise keep it oscillating, causing the beam to return to 

equilibrium more quickly and with less overshoot. Hence, the presence of damping coefficient 𝐶o increases the 

overall stability of the beam system. 

 

 

 
Figure 1: Transverse displacement of a simply supported prestressed shear beam under the action 

of moving load for various values of damping coefficient Co when the beam length L = 50 and for 

fixed values of  𝑲 = 𝟒𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎, 𝑵 = 𝟒𝟎𝟎𝟎  𝒂𝒏𝒅  𝑪 = 𝟒𝟎 
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Figure 2: Rotation of a simply supported prestressed shear beam under the action of moving load 

for various values of damping coefficient Co when the beam length L = 50 and for fixed values of 

 𝑲 = 𝟒𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎, 𝑵 = 𝟒𝟎𝟎𝟎  𝒂𝒏𝒅  𝑪 = 𝟒𝟎 

 

 

 

 

 

 
Figure 3: Transverse displacement of a simply supported prestressed shear beam under the action 

of moving load for various values of damping coefficient Co when the beam length L = 55 and for 

fixed values of  𝑲 = 𝟒𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎, 𝑵 = 𝟒𝟎𝟎𝟎  𝒂𝒏𝒅  𝑪 = 𝟒𝟎 
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Figure 4: Rotation of a simply supported prestressed shear beam under the action of moving load 

for various values of damping coefficient Co when the beam length L = 55 and for fixed values of 

 𝑲 = 𝟒𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎, 𝑵 = 𝟒𝟎𝟎𝟎  𝒂𝒏𝒅  𝑪 = 𝟒𝟎 

 

 

 

 

 
Figure 5: Transverse displacement of a simply supported prestressed shear beam under the action 

of moving load for various values of damping coefficient Co when the beam length L = 60 and for 

fixed values of  𝑲 = 𝟒𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎, 𝑵 = 𝟒𝟎𝟎𝟎  𝒂𝒏𝒅  𝑪 = 𝟒𝟎 
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Figure 6: Rotation of a simply supported prestressed shear beam under the action of moving load 

for various values of damping coefficient Co when the beam length L = 60 and for fixed values of 

 𝑲 = 𝟒𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎, 𝑵 = 𝟒𝟎𝟎𝟎  𝒂𝒏𝒅  𝑪 = 𝟒𝟎 

 

 

 

 

 
Figure 7: Transverse displacement of a simply supported prestressed shear beam under 

the action of moving load for various values of damping coefficient Co when the beam 

length L = 65 and for fixed values of  𝑲 = 𝟒𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎, 𝑵 = 𝟒𝟎𝟎𝟎  𝒂𝒏𝒅  𝑪 = 𝟒𝟎 
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Figure 8: Rotation of a simply supported prestressed shear beam under the action of moving load 

for various values of damping coefficient Co when the beam length L = 65 and for fixed values of 

 𝑲 = 𝟒𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎, 𝑵 = 𝟒𝟎𝟎𝟎  𝒂𝒏𝒅  𝑪 = 𝟒𝟎 

 

 

In a similar manner, the response amplitude profile of a simply supported uniformly prestressed shear beam 

subjected to moving load for various values of damping coefficient 𝐶o, with load speeds (c) set at 40 m/s, 45 m/s, 

50 m/s and 55 m/s respectively and for the fixed values of other parameters are presented in figures 9 to 16. The 

graphs clearly indicate that as the velocity of the moving load increases, the dynamic effects become increasingly 

significant, resulting in greater transverse displacement and rotation of the beam. However,  increase in the value 

of damping coefficient 𝐶o reduces the transverse displacement and rotation of the vibrating beam considerably. In 

practical applications, this implies that as the value of damping coefficient 𝐶o increases, the vibration amplitude 

and frequency of vibrations of the beam reduce significantly. Consequently, the beam exhibits enhanced rigidity 

and stability, enabling it to withstand lateral deflection and severe vibrations, thus allowing it to support larger 

transverse loads even at higher velocities without the risk of buckling. Hence, the potential for flexural cracking 

or bending within the beam system is significantly reduced with the presence of damping. 
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Figure 9: Transverse displacement of a simply supported prestressed shear beam under the action 

of moving load for various values of damping coefficient Co when the Load Speed C = 40 and for 

fixed values of  𝑲 = 𝟒𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎, 𝑵 = 𝟒𝟎𝟎𝟎  𝒂𝒏𝒅  𝑳 = 𝟓𝟎 

 

 

 

 
Figure 10: Rotation of a simply supported prestressed shear beam under the action of moving 

load for various values of damping coefficient Co when the Load Speed C = 40 and for fixed 

values of  𝑲 = 𝟒𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎, 𝑵 = 𝟒𝟎𝟎𝟎  𝒂𝒏𝒅  𝑳 = 𝟓𝟎 
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Figure 11: Transverse displacement of a simply supported prestressed shear beam under the 

action of moving load for various values of damping coefficient Co when the Load Speed C = 45 

and for fixed values of  𝑲 = 𝟒𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎, 𝑵 = 𝟒𝟎𝟎𝟎  𝒂𝒏𝒅  𝑳 = 𝟓𝟎 

 

 

 

 

 
Figure 12: Rotation of a simply supported prestressed shear beam under the action of moving load 

for various values of damping coefficient Co when the Load Speed C = 45 and for fixed values of 

 𝑲 = 𝟒𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎, 𝑵 = 𝟒𝟎𝟎𝟎  𝒂𝒏𝒅  𝑳 = 𝟓𝟎 
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Figure 13: Transverse displacement of a simply supported prestressed shear beam under the 

action of moving load for various values of damping coefficient Co when the Load Speed C = 50 

and for fixed values of  𝑲 = 𝟒𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎, 𝑵 = 𝟒𝟎𝟎𝟎  𝒂𝒏𝒅  𝑳 = 𝟓𝟎 

 

 

 

 
Figure 14: Rotation of a simply supported prestressed shear beam under the action of moving load 

for various values of damping coefficient Co when the Load Speed C = 50 and for fixed values of 

 𝑲 = 𝟒𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎, 𝑵 = 𝟒𝟎𝟎𝟎  𝒂𝒏𝒅  𝑳 = 𝟓𝟎 
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Figure 15: Transverse displacement of a simply supported prestressed shear beam under the 

action of moving load for various values of damping coefficient Co when the Load Speed C = 55 

and for fixed values of  𝑲 = 𝟒𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎, 𝑵 = 𝟒𝟎𝟎𝟎  𝒂𝒏𝒅  𝑳 = 𝟓𝟎 

 

 

 

 
Figure 16: Rotation of a simply supported prestressed shear beam under the action of moving load 

for various values of damping coefficient Co when the Load Speed C = 55 and for fixed values of 

 𝑲 = 𝟒𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎, 𝑵 = 𝟒𝟎𝟎𝟎  𝒂𝒏𝒅  𝑳 = 𝟓𝟎 

 

Finally, the effect of damping coefficient Co on the critical velocity of a simply supported prestressed shear beam 

traversed by moving load is presented in figure 17. It is observed from the graph that for various values of damping 

coefficient Co and for the fixed values of other parameters, the higher the value of the damping coefficient Co, the 

higher the critical velocity of the beam. In practical terms, increase in damping coefficient Co reduces the peak 

amplitude of resonance, where the beam's natural frequency matches the excitation frequency.  Consequently, 
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damping contributes to the dynamic stability of the beam system, mitigating the risk of resonance that may result 

in structural failure and thus, safeguarding the safety of the structure's occupants. 

 

 

 
Figure 17: Variation of the critical velocity (VCr) against damping coefficient (Co) 
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CONCLUSION  

This paper examines damping coefficient effect on transverse displacement and rotation under moving of a 

prestressed shear beam supported by an elastic foundation. A solution methodology that incorporates finite Fourier 

transform techniques, Laplace transformation, and convolution theory is utilized to obtain the solution for the 

coupled second-order partial differential equations that define the motion of the beam-load system. Comprehensive 

analyses are conducted to examine the effect of damping coefficient on the transverse displacement and rotation 

of prestressed shear beams of different length sizes when subjected to a moving load traversing at different 

velocities. Additionally, the study explores how the damping coefficient affects the critical velocities of the 

vibrating system. The graphs plotted clearly illustrate that the damping coefficient significantly enhances the 

stability of the beam under the moving load. The findings reveal that both the transverse displacement and rotation 

of the beam are noticeably reduced as the damping coefficient increases. Additionally, it is observed that higher 

damping coefficient values correspond to increased critical velocities, indicating a more robust dynamic system. 

Therefore, in the design of engineering structures such as bridges, pipelines, railway tracks, aerospace components, 

railway bridges, overhead cranes, cableways, and tunnels, it is indispensable to comprehend the influence of 

damping in order to design structures capable of withstanding the severe effects of dynamic loads and vibrations 

induced by environmental factors, thereby ensuring the safety, reliability, and efficiency of the design. 
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