
Volume-09 Issue 06, June-2025 ISSN: 2456-9348

 Impact Factor: 8.232

International Journal of Engineering Technology Research & Management

(IJETRM)

https://ijetrm.com/

IJETRM (http://ijetrm.com/) [365]

AI-POWERED TELEGRAM OSINT TOOL FOR CYBER THREAT

DETECTION AND ANALYSIS – REVIEW

VidhyaSathish

Assistant Professor, School of Computing Science,

Department of Advanced Computing and Analytics, VISTAS, Pallavaram, Chennai

vidhyasathish83@gmail.com

V. Queen Jemila

Assistant Professor, Department of Computer Applications,

V. V. Vanniaperumal College for Women, Virudhunagar.

queenjemila@vvvcollege.org

T. Devasena

Assistant Professor, Department of Cognitive Systems,

SDNB Vaishnav college for women, Chrompet, Chennai

devasenasuresh07@gmail.com

ABSTRACT

It is now essential to monitor and examine groups and channels for dangerous information due to the increase in

cyber dangers and fraudulent activity on social media, especially on sites like Telegram. The AI-Powered

Telegram OSINT Tool project uses OpenAI, NLP, and Telegram scraping to identify phishing attempts, scams,

fraud, and dark web activity. This application offers profound insights into questionable actions by fusing real-

time keyword-based surveillance, sentiment analysis powered by AI, contextual risk assessment, and graphical

trend visualization. OpenAI integration improves accuracy and interaction, allowing users to query hazards and

obtain insightful information. The paper is intended to improve threat intelligence for analysts, law enforcement,

and cybersecurity experts.

Keywords:

OpenAI, NLP, OSINT Tool, Cyber Threat Detection

INTRODUCTION

Telegram has rapidly expanded into one of the most prominent messaging networks, with over 700 million

active users globally. Telegram, which is well-known for its strong encryption, anonymity, extensive

broadcasting capabilities, and lax moderation guidelines, has turned into a double-edged sword that not only

makes it easier for people to communicate and form communities, but also makes it easier for cybercriminals to

flourish. Telegram's services are increasingly being used by cyber adversaries to plan and advance illegal

activities. These include disseminating false information and phishing links, conducting extensive investment

frauds, disseminating hacking tools, and organizing dark web-related operations like illicit marketplaces and

data breaches. Businesses, people, and national security are all seriously threatened by this misuse.

Conventional techniques for detecting threats, such manual moderation or basic keyword-based filtering, are no

longer adequate. These methods frequently produce a large number of false positives or undetected threats,

struggle with obfuscated language or coded threats, and lack contextual knowledge. A more sophisticated,

intelligent method of threat detection is required due to the dynamic and unstructured nature of Telegram

content. The AI-Powered Telegram OSINT Tool for Cyber Threat Detection and Analysis was created as a

proactive way to address this expanding problem. This program is a desktop Python application with a Tkinter

GUI that provides cybersecurity experts with an easy-to-use interface.It uses robust Telegram client libraries,

such as Pyrogram or Telethon, to scrape and get live messages from open Telegram chats, groups, and channels.

https://ijetrm.com/
http://ijetrm.com/
mailto:vidhyasathish83@gmail.com
mailto:queenjemila@vvvcollege.org
mailto:devasenasuresh07@gmail.com

Volume-09 Issue 06, June-2025 ISSN: 2456-9348

 Impact Factor: 8.232

International Journal of Engineering Technology Research & Management

(IJETRM)

https://ijetrm.com/

IJETRM (http://ijetrm.com/) [366]

SYSTEM ANALYSIS

At the moment, Telegram's cyber threat identification mostly depends on a mix of manual labor, platform-level

moderation (which is frequently quite light), and a few simple automated techniques. The dynamic and complex

nature of cybercriminal activity on the network frequently makes these current solutions insufficient.

Manual Moderation and User Reporting:

Description: Administrators or moderators may oversee material in Telegram groups and channels, removing

postings or banning members who seem suspicious or break community rules. Additionally, users can alert

platform managers to questionable content.

Restrictions:

Manual moderation is incredibly ineffective and unable to keep up with the amount of content being produced,

especially when there are millions of active users and innumerable channels.

Subjectivity: Choices about moderation may be arbitrary and inconsistent.

Delayed Response: Before threats are manually recognized and dealt with, they may spread quickly.

Restricted Scope: A lot of illegal activity takes place in secret groups or channels that are difficult for

moderators or the public to view.

Lack of Technical Expertise: Moderators might not have the cybersecurity know-how to spot complex dangers

like malware spreading or phishing URLs.

Basic Automated Tools for Keyword-Based Filtering:

Description: Some simple tools may use keyword filtering to automatically detect messages that contain terms

like "hack," "scam," "bitcoin," or "password" that are linked to illegal activity.

Restrictions:

Lack of Context: Keyword matching is not contextually aware, which can result in a significant number of false

negatives (missing threats that utilize specific keywords or obscure language) and false positives (flagging valid

talks).

Evasion Techniques: To get over basic keyword filters, cybercriminals frequently employ synonyms, alternate

spellings, or coded language.

Incapacity to Identify Complex Threats: Keyword filtering is unable to detect sophisticated threats such as

coordinated disinformation operations or sophisticated phishing attempts.

Limited Public Information (Third-Party Monitoring Services):

Description: A few outside cybersecurity companies might provide social media platform monitoring, possibly

including Telegram. However, precise information regarding their efficacy and methodology is frequently

confidential and not publicly accessible.

Restrictions:

Cost: These services can be pricey, and not all businesses or people may be able to afford them.

Data Privacy Issues: There may be privacy issues when sharing Telegram data with outside services.

Access Restrictions: Private groups and channels may still be inaccessible.

Platform-Level Automated Moderation (Minimal):

Description: Although Telegram prioritizes privacy and little censorship, it probably has some automated

internal methods to identify and eliminate some kinds of unlawful content (such as content that promotes

terrorism or child sexual abuse). Nevertheless, the breadth and complexity of these systems for more

comprehensive cyber threat detection are not made public and seem to be constrained in comparison to other

significant platforms.

Restrictions:

Privacy Focus: The degree to which Telegram actively monitors material may be constrained by its significant

emphasis on user privacy.

Emphasis on Extreme Content: It's probable that automated moderation gives more weight to content that is

blatantly unlawful than to more subtle online dangers like fraud or misinformation.

PROPOSED SOLUTION: AI-POWERED TELEGRAM OSINT TOOL

The AI-Powered Telegram OSINT Tool aims to overcome the limitations of existing solutions by offering a

proactive, intelligent, and user-centric approach to cyber threat detection and analysis on Telegram.

Key Advantages:

● Automated Data Collection: Compared to human monitoring, the program greatly increases productivity by

automating the process of extracting messages from public Telegram channels.

https://ijetrm.com/
http://ijetrm.com/

Volume-09 Issue 06, June-2025 ISSN: 2456-9348

 Impact Factor: 8.232

International Journal of Engineering Technology Research & Management

(IJETRM)

https://ijetrm.com/

IJETRM (http://ijetrm.com/) [367]

●Intelligent Analysis (Future Potential): The architecture is made to incorporate more sophisticated Natural

Language Processing (NLP) and Machine Learning (ML) techniques in the future, even though the current

implementation only employs simple keyword matching. This will make it possible for:

Contextual Understanding: Recognizing dangers not just by keywords but also by the context and meaning of

communications. Finding odd patterns or behaviors that could point to malevolent activity is known as anomaly

detection. Sentiment analysis is the process of identifying emotionally charged words that are frequently utilized

in deception or efforts at manipulation.

Link analysis is the process of locating potentially harmful websites.

● User-Friendly Interface: Professionals in cybersecurity with different degrees of technical proficiency can

utilize the application thanks to its graphical user interface.

●Local Operation and Data Privacy: The tool guarantees data privacy and maybe faster processing by running

locally rather than depending on external cloud AI services.

●Actionable Insights through Visualization: Pie charts and other visual analytics offer a rapid and simple

method of comprehending the frequency of possible hazards in a scanned channel. The "Scam History" provides

a log for monitoring and examination.

●Extensibility: New features and more advanced threat detection models can be added in the future thanks to the

Python-based design.

●OSINT Focus: The tool is made especially for gathering Open-Source Intelligence, enabling investigators to

proactively find and examine publicly accessible data about cyberthreats on Telegram.

How it Addresses Limitations of Existing Solutions:

Scalability: Compared to manual efforts, automation enables the monitoring of a greater number of channels.

●Context and Evasion: By comprehending context and possibly detecting disguised threats, future AI/NLP

integration will overcome the drawbacks of keyword-based filtering.

Cost and Accessibility: Because it is a locally installed application, it may be less costly than pricey third-party

services.

●Data Privacy: By operating locally, data privacy issues related to sharing data with outside services are

lessened.

●Actionable Intelligence: To support analysis and decision-making, the tool offers organized data and

visualizations.

Data Flow Diagram (DFD)

https://ijetrm.com/
http://ijetrm.com/

Volume-09 Issue 06, June-2025 ISSN: 2456-9348

 Impact Factor: 8.232

International Journal of Engineering Technology Research & Management

(IJETRM)

https://ijetrm.com/

IJETRM (http://ijetrm.com/) [368]

1. USER LOGIN PROCESS:

●Input: The user launches the program. The Telegram Login user interface is displayed. The user's phone

number is entered.

●Flow: The GUI records the phone number that is input. When you click "Send Code," the Telethon library

receives the phone number and uses it to send a code request to the Telegram servers. A verification code is sent

to the user's Telegram account via Telegram servers. After receiving the code, the user inputs it into the GUI's

"Enter Code" field.

Telethon receives this code and the phone number in order to authenticate against the Telegram servers. The

user is asked for their password, which is subsequently sent to Telethon for validation if two-factor

authentication is set.

Result:

○Success: Telethon creates a session with the Telegram API when authentication is successful. The Telegram

Dashboard appears once the Login user interface has been closed. Through the API, user data (name, username)

is obtained from Telegram and shown on the dashboard.

○Failure: The login process resets and the user is presented with an error message in the Login UI if

authentication fails (incorrect code, password, or other Telegram API issues).

2. SCANNING A TELEGRAM CHANNEL FOR SCAMS:

Input: The user presses the "Scan Channel for Scam" button after interacting with the dashboard. The user is

prompted to input the URL or username of the Telegram channel in a dialog box.

Flow: The GUI records the channel identifier that has been entered. To resolve the channel entity (get the

internal ID of the channel from Telegram), this identifier is sent to the Telethon library.

The recent message history of the designated channel is then retrieved by Telethon via a request to the Telegram

API (up to a configured limit, presently 50). The text content of the mails that were retrieved is extracted. The

detect_scams function then receives these notifications. Iteratively going through each message, the

detect_scams method looks for predefined scam keywords. These keywords are used to identify messages that

may be frauds.Recorded are the total number of messages scanned, the number of scam messages found, and the

scam messages' content. This summaries data (safe count, scam count) are used by the display_pie_chart

function. The save_scam_history function receives the list of scam messages found and the scanned channel

number.

The result:

If any scam messages are detected, a pop-up warning displaying the number of frauds discovered is displayed. If

no scams are found, a pop-up informative message appears. The dashboard shows a pie chart that illustrates the

percentage of safe and scam communications. The scanned channel and the identified scam messages are

recorded in a new entry that is appended to the local scam_history.txt file.

3. VIEWING SCAM HISTORY:

● Input: The user clicks the "View Scam History" button on the dashboard.

● Flow:

○ The application checks if the scam_history.txt file exists. If the file exists, its content is read.

Output:

○ A message box is displayed showing the content of the scam_history.txt file. If the file is

empty or doesn't exist, a message indicating "No history yet" or "No history found" is

shown.

4.

5. DISPLAYING THE NEWS FEED:

● Input: Upon successful login and dashboarddisplay, the fetch_news_messages function is

automatically called.

● Flow:

○ The function uses Telethon to resolve the entity of a predefined news channel (currently

hardcoded).

○ Telethon requests the recent message history (up to 5 messages) from this news channel

https://ijetrm.com/
http://ijetrm.com/

Volume-09 Issue 06, June-2025 ISSN: 2456-9348

 Impact Factor: 8.232

International Journal of Engineering Technology Research & Management

(IJETRM)

https://ijetrm.com/

IJETRM (http://ijetrm.com/) [369]

via the Telegram API. The text content of these messages is extracted.

Output:

○ The extracted news messages are displayed in the scrolled text area at the bottom of the

dashboard. If fetching fails due to network issues or an invalid channel, an error message is

displayed in the news feed area.

6. LOGOUT PROCESS:

● Input: The user clicks the "Logout" button on the dashboard.

● Flow:

○ The logout function calls the Telethon library's log_out() method to terminate the

current Telegram session. The dashboard window is closed.

Output:

○ An information message box is displayed confirming that the user has been logged out.

In summary, the data flow involves user input through the GUI, communication with the Telegram API via

the Telethon library to retrieve channel and user data, local processing of message content for basic scam

detection, visualization of results using Matplotlib, and persistent storage of scan history in a local text file.

The news feed functionality involves a similar data retrieval process from a designated channel.

CONCLUSION

A more thorough and automated testing approach will be crucial for guaranteeing the quality, dependability, and

security of the AI-Powered Telegram OSINT Tool as it develops and adds more advanced features. Future

testing should take into account the following in addition to the initial considerations:

 Automated UI Testing: Using automated UI testing frameworks (like PyAutoGUI and Selenium) to

mimic user activities and confirm how the graphical user interface behaves in various operating systems and

settings. As the user interface is updated, this can help detect regressions and guarantee consistent functionality.

 API Testing: creating particular tests to communicate directly with the Telegram API and the Telethon

library, confirming that data requests and answers are correct, resolving errors related to API-specific problems

(such as rate limits or temporary unavailability), and making sure that sessions are managed correctly.

In-depth Security Testing: Performing comprehensive security evaluations, including static and

dynamic code analysis, to find possible weaknesses like data injection risk, unsafe storage of API keys (even

locally), and other security flaws. Security professionals may do penetration testing as part of this.

Usability Testing with Target Users: Conducting usability testing sessions with cybersecurity analysts

and investigators to acquire their opinions on the tool's overall usability, effectiveness, and intuitiveness. This

can assist in pinpointing places where the interface design and process need to be improved.

Cross-Platform Testing: Verifying that the program runs accurately and reliably on all supported

desktop environments and operating systems, including Windows, macOS, and Linux.

Regression Testing: Using automated regression test suites to make sure that bug fixes or new features

don't unintentionally cause problems or interfere with functionality. As the codebase changes, these tests ought

to be performed on a frequent basis.

 Data Integrity Testing: Creating tests to confirm that the information included in the scam_history.txt

file (as well as any upcoming database implementations) is consistent and intact across various operations and

application states.

REFERENCES

1. Bimal Ghimire and Danda B. Rawat. 2022. Recent Advances on Federated Learning for Cybersecurity and

Cybersecurity for Federated Learning for Internet of Things. IEEE Internet of Things Journal 9, 11 (2022),

8229–8249. DOI: http://dx.doi.org/10.1109/JIOT.2022.3150363

2. Riccardo Ghioni, Mariarosaria Taddeo, and Luciano Floridi. 2023. Open Source Intelligence and AI: A

Systematic Review of the Gelsi Literature? AI and Society (2023), 1–16.

DOI:http://dx.doi.org/10.1007/s00146-023-01628-x

3. Helen Gibson, Steve Ramwell, and Tony Day. 2016. Analysis, Interpretation and Validation of Open

Source Data. Springer International Publishing, Cham, 95–110. DOI:http://dx.doi.org/10.1007/978-3-319-

47671-1_7.

https://ijetrm.com/
http://ijetrm.com/

Volume-09 Issue 06, June-2025 ISSN: 2456-9348

 Impact Factor: 8.232

International Journal of Engineering Technology Research & Management

(IJETRM)

https://ijetrm.com/

IJETRM (http://ijetrm.com/) [370]

4. Seonghyeon Gong and Changhoon Lee. 2021. Cyber Threat Intelligence Framework for Incident Response

in an Energy Cloud Platform. Electronics 10, 3 (2021). DOI:http://dx.doi.org/10.3390/electronics10030239.

5. Gustavo González-Granadillo, Mario Faiella, Ibéria Medeiros, Rui Azevedo, and Susana González-Zarzosa.

2021. ETIP: An Enriched Threat Intelligence Platform for improving OSINT correlation, analysis,

visualization and sharing capabilities. Journal of Information Security and Applications 58 (2021), 102715.

DOI:http: //dx.doi.org/10.1016/j.jisa.2020.102715

6. Vasile Gheorghit,ă Găitan and Ionel Zagan. 2021. Experimental Implementation and Performance

Evaluation of an IoT Access Gateway for the Modbus Extension. Sensors 21, 1 (2021).

DOI:http://dx.doi.org/10.3390/s21010246.

7. Hamed Haddadpajouh, Raouf Khayami, Ali Dehghantanha, Kim-Kwang Raymond Choo, and Reza

Meimandi Parizi. 2020. AI4SAFE-IoT: an AI-powered secure architecture for edge layer of Internet of

things. Neural Computing and Applications (2020), 16119–16133. DOI:http://dx.doi.org/10.1007/s00521-

020-04772-3.

8. Meng Hao, Hongwei Li, Xizhao Luo, Guowen Xu, Haomiao Yang, and Sen Liu. 2020. Efficient and

Privacy-Enhanced Federated Learning for Industrial Artificial Intelligence. IEEE Transactions on Industrial

Informatics 16, 10 (2020), 6532–6542. DOI:http://dx.doi.org/10.1109/TII.2019.2945367

https://ijetrm.com/
http://ijetrm.com/

