
Volume-09 Issue 06, June-2025                                                                                                ISSN: 2456-9348 

                                                                                                                                                   Impact Factor: 8.232 

 

 

 
International Journal of Engineering Technology Research & Management 

(IJETRM) 

https://ijetrm.com/ 

 

IJETRM (http://ijetrm.com/)   [343]   

 

LEARNING SHADOW REMOVAL FROM UNPAIRED SAMPLES VIA 

RECIPROCAL LEARNING 
 

P.Shanmukha Rao1 

N.Sindhuja2 

B. Tech Student, Dept. of Computer Science and Engineering, R.V.R & J.C College of Engineering, 

Chowdavaram, Guntur, Andhra Pradesh, India 

 

Mrs. Zareena Noorbasha3 

Assistant Professor, Dept. of Computer Science and Engineering, R.V.R & J.C College of 

Engineering, Chowdavaram, Guntur, Andhra Pradesh, India 
 

 

ABSTRACT 

This work tackles the problem of removing shadows from images using only high-level image labels, without the 

need for detailed pixel-level annotations. The proposed method relies on a deep learning framework that learns to 

distinguish and eliminate shadows based on whether an image contains shadows or not. A key feature of this 

approach is the interactive optimization between two components—a shadow detector and a shadow remover—

that work together to gradually enhance the model’s performance. Instead of depending on traditional supervised 

methods, a self-guided learning strategy is employed to ensure robust training without overfitting. Additionally, 

a specialized discriminator is introduced to help the model preserve color consistency and maintain realistic visual 

quality after shadow removal. Extensive evaluations on various datasets, including paired and unpaired samples, 

demonstrate the effectiveness and adaptability of this mutual learning-based framework. 
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INTRODUCTION 

Shadows, formed by the obstruction of light by objects, often complicate various computer vision tasks such as 

image segmentation, object detection, and 3D reconstruction. Effectively removing shadows can significantly 

enhance image understanding and downstream performance in vision-based applications. This paper presents a 

novel and practical learning framework designed specifically for shadow removal, with an emphasis on using 

unpaired image data. Traditional shadow removal methods rely heavily on convolutional neural networks (CNNs) 

trained on paired datasets, which require both shadow and corresponding shadow-free images. Although these 

models achieve high accuracy in controlled settings, they struggle with generalization due to limited scene 

diversity and the challenge of acquiring large-scale, well-aligned paired datasets. 

Capturing high-quality paired data often involves physically removing shadow-casting objects and ensuring 

consistent lighting and color alignment, which is both labor-intensive and impractical in real-world settings. 

Recent efforts have explored training with unpaired data to reduce data collection costs and increase scene 

variability. However, these models often leave shadow remnants or introduce color inconsistencies due to 

insufficient supervision and optimization challenges. 

To overcome these limitations, we propose a reciprocal learning framework that transforms the complex task of 

joint shadow and illumination estimation into a conditional problem. Our method introduces two interactive 

networks—a shadow detector that infers shadow regions and a shadow remover that learns to eliminate shadows 

based on the detected regions. This collaborative design allows the model to better focus on shadow-affected areas 

during training. To further enhance training stability and performance, we implement a self-paced learning 

strategy to mitigate the effects of inaccurate predictions and introduce specialized loss functions for color 

consistency and shadow attention. Extensive experiments on benchmark datasets such as ISTD, SRD, and USR 

show that our approach achieves superior performance compared to previous models trained with unpaired data, 

producing visually consistent and high-quality shadow-free images. 
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OBJECTIVES 

The primary objective of this study is to address the key challenges involved in shadow removal using weakly 

supervised learning techniques. Traditional models depend on paired datasets that include both shadow and 

shadow-free images, which are difficult and costly to obtain. This project aims to develop a more practical solution 

by utilizing unpaired image data, where each image is only labeled at a high level to indicate the presence of 

shadows. The focus is on designing an intelligent learning framework capable of estimating shadow regions and 

effectively removing them using mutual collaboration between a shadow detector and a shadow remover. Another 

important goal is to minimize residual shadows and color inconsistencies typically observed in previous unpaired 

approaches. The model is also expected to generalize across diverse scenes and lighting conditions. By introducing 

self-paced learning and advanced loss functions, the proposed system strives to achieve high-quality shadow 

removal results with limited supervision. 

 

METHODOLOGY  

This study adopts a novel weakly supervised learning approach for removing shadows from images using unpaired 

training samples. Traditional methods depend on pixel-level paired data (a shadow image and its exact shadow-

free counterpart), which are difficult to obtain in real-world conditions. In contrast, our proposed method is 

capable of learning from high-level image labels alone—where the image is only annotated as having a shadow 

or not. 

The core idea behind the method lies in modeling the shadow removal task as a conditional optimization problem 

using latent variables. Instead of directly mapping a shadow image to a shadow-free version (which is complex 

due to the absence of pixel-wise supervision), we decompose the task into two interconnected sub-networks: 

1. A Shadow Detector (SD) that estimates shadow regions in an image. 

2. A Shadow Remover (SR) that removes shadows based on detected regions. 

These two networks are trained reciprocally in three phases, allowing them to refine each other’s outputs 

iteratively, improving accuracy at each step. 

Phase 1: Initial Shadow Remover Training 

In the first phase, we train a basic shadow removal generator using a CycleGAN architecture. This generator, 

denoted as Gf0G_f^0Gf0, learns to generate a shadow-free version of an image without paired supervision. 

The generated image is then compared to the input shadow image to extract pseudo shadow masks—regions that 

likely contain shadows based on pixel differences. 

 
Fig. 1: Illustration of the Reciprocal Learning Process 

Phase 2: Shadow Mask Estimation 

These pseudo shadow masks are then used as supervision to train the Shadow Detector (SD). However, because 

the pseudo labels might contain noise or inaccuracies (due to lighting variation, soft shadows, or image artifacts), 

we employ a Self-Paced Learning (SPL) strategy. 

SPL introduces a mechanism that gradually selects training samples, starting from "easy" examples (clear, well-

defined shadows) and slowly introducing more complex or ambiguous ones. This reduces the risk of the detector 

overfitting to noisy labels. 
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Fig. 2: Deep Reciprocal Network Architecture 

 

Additionally, the detector architecture incorporates dilated convolutions, which are crucial for capturing long-

range spatial dependencies—especially beneficial for identifying large or softly blurred shadow boundaries. These 

dilated layers allow the network to perceive a broader context without increasing computational overhead. 

Moreover, squeeze-and-excitation (SE) modules are integrated to recalibrate feature maps by adaptively weighting 

each channel, ensuring that critical shadow-related features receive greater attention during learning. 

Phase 3: Enhanced Shadow Remover 

The third phase employs the refined shadow masks generated by the Shadow Detector (SD) to retrain a more 

advanced generator network, denoted as Gf1G_f^1Gf1. By leveraging high-quality mask guidance, this 

retrained model focuses on precise and localized shadow correction, effectively restoring illumination while 

maintaining the structural integrity of the original scene. A Shadow-Attention Discriminator is introduced at this 

stage, which not only discerns real from generated images but specifically focuses on the shadow regions using 

the mask for guidance. This enables the adversarial learning process to emphasize realistic texture and boundary 

recovery in de-shadowed outputs. 

To enhance perceptual quality further, a Color-Maintenance Loss is incorporated, ensuring that the color tones of 

non-shadow regions remain unaltered, thereby avoiding artifacts or unnatural transitions. Additionally, perceptual 

loss based on deep feature maps may be used to preserve fine-grained visual details. The training process also 

integrates regularization to prevent overfitting and ensure generalization across diverse lighting conditions. 

Together, these components make the enhanced remover capable of handling real-world shadow variations with 

improved fidelity and robustness. 
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Self-Paced Learning Strategy 

To manage training on noisy pseudo-masks, we implement a self-paced learning algorithm. This algorithm 

evaluates each sample's loss and gradually includes it for training based on a dynamic threshold λ\lambdaλ. 

Samples with high loss (likely noise) are temporarily excluded. 

The SPL training process is detailed in the following algorithm: 

Algorithm 1: Self-Paced Shadow Detection Training Algorithm 

Input: 

D: Shadow removal dataset; 

θ: parameters of shadow detector; 

vᵢ: the weight of i-th sample; 

r_b: begin ratio of self-paced learning; 

r_e: end ratio of self-paced learning; 

n: epoch number; 

λ: loss threshold; 

Output: 

Optimal shadow detector parameter θ*; 

1. Initial vᵢ = 1, λ = 0; Initial θ to follow a zero-mean Gaussian distribution with a standard deviation of 

0.02; 

2. for each i ∈ [1, n] do 

3.   Fix v, optimize θ using equation 10 and save sample loss to log; 

4.   Sort the samples in D in ascending order of their loss value lᵢ; 

5.   Calculating current reference ratio r_c = (r_b + (r_e − r_b) * i / n) * 100; 

6.   Select the sample ranked in the r_c-th percentile, and use the corresponding loss value l_c as the 

threshold: λ = l_c; 

7.   for each sample xᵢ in D do 

8.     if sample loss lᵢ > λ then Set vᵢ = 0; 

9.     end if 

10.     if sample loss lᵢ ≤ λ then Set vᵢ = 1; 

11.     end if 

12.   end for 

13. end for 

14. return θ*; 

This strategy has been shown through experiments to reduce training errors and enhance the segmentation 

accuracy of the shadow detector. 

Mathematical Formulation 

Let: 

• X- shadow image  

• Y – shadow-free image 

• M – shadow mask 

• X₍ᵣₑₗᵢₜ₎ – relit version of the shadow image 

• G𝒻 – shadow removal generator 

• Gₛ – shadow synthesis generator 

The basic formulation for reconstructing a shadow-free image is: 

Y = X₍ᵣₑₗᵢₜ₎ ⋅ M + X ⋅ (1 − M) 

Where: 

X₍ᵣₑₗᵢₜ₎ = w ⋅ X + b 

Here, w and b are affine parameters used for adjusting brightness and color tone. 

Shadow mask M is treated as a latent variable, and the objective is to find an optimal M such that the generated 

de-shadowed image matches the ground truth (or looks visually real). 

Training Losses 

The total objective function for training the network combines several loss terms: 
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# Loss Type Symbol 

1. Adversarial Loss 𝓛ᴳᴬᴺ 

2. Cycle Consistency Loss 𝓛𝚌ʸᶜ 

3. Identity Loss 𝓛ᵢ𝚍ₜ 

4. Color Maintenance Loss 𝓛𝚌ₒₗₒᵣ 

The total loss function: 

𝓛ₜₒₜₐₗ = λ₁·𝓛𝚌ʸᶜ + λ₂·𝓛ᵢ𝚍ₜ + λ₃·𝓛𝚌ₒₗₒᵣ 

Where λ₁, λ₂, λ₃ are weights that balance the impact of each component. 

X = G_s(Y, M) 

Where G_s is the shadow synthesis generator, reconstructing the original shadow image from the clean image 

and shadow mask. 

λ₁ = 10.0, λ₂ = 5.0, λ₃ = 0.5 

These were experimentally tuned to prioritize color consistency and reconstruction. 

 
Data Augmentation and Architecture Enhancements 

To improve model generalization: 

• Random cropping and color jittering are applied. 

• Dilated convolutions in the bottleneck layers allow better feature extraction for large shadows. 

• SE (squeeze-and-excitation) modules recalibrate the importance of features at each layer. 

These adjustments collectively lead to better representation and discrimination between shadow and non-shadow 

regions. 

 
Implementation Details 

• Framework: PyTorch 

• Optimizer: Adam (β1 = 0.5, β2 = 0.9999) 

• Learning Rate: 0.0002 (decayed linearly after half training) 

• Datasets: 

• ISTD: Paired dataset (used for comparison) 

• SRD: Pairwise dataset without full masks 

• USR: Unpaired dataset with high scene diversity 

Training on ISTD and SRD is done in one cycle of reciprocal learning; USR, due to its complexity, uses two 

cycles. 

 
 

RESULTS AND DISCUSSION 

The proposed Deep Reciprocal Learning model (DRNet) was evaluated through extensive experiments on three 

benchmark datasets: ISTD, SRD, and USR. Each dataset represents varying conditions of shadow types, lighting, 
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and scene complexity. DRNet was compared against several state-of-the-art models, including 

MaskShadowGAN, LGSN, and fully supervised methods like ST-CGAN and SP+M-Net. 

Dataset Descriptions: 

ISTD Dataset: Contains 1,330 training and 540 testing triplets with shadow, shadow-free images, and masks. 

SRD Dataset: Includes 2,050 image pairs for training and 286 for testing; lacks explicit masks, which were 

manually annotated. 

USR Dataset: Consists of unpaired data with 1,559 shadow images and 1,719 clean images, used to test 

performance in real-world unstructured scenarios. 

Quantitative Evaluation: 

For paired datasets (ISTD and SRD), evaluation is performed using Mean Absolute Error (MAE) in Lab color 

space, which better captures perceptual differences. The lower the MAE, the better the shadow removal quality. 

 

Model ISTD MAE ↓ SRD MAE ↓ USR User Score ↑ 

MaskShadowGAN 7.68 6.52 5.93 

LGSN 7.45 6.21 6.34 

DRNet (Ours) 4.39 5.83 7.76 

DRNet outperforms previous methods by a significant margin, especially on USR, indicating superior 

generalization to real-world unpaired scenarios. 

Quantitative Comparison of Various Methods on the ISTD Dataset 

“MS” indicates MaskShadowGAN. “A”, “N”, and “S” refer to the MAE (Mean Absolute Error) for the Entire 

Image Region, Non-Shadow Region, and Shadow Region respectively. ↓ denotes that a lower value indicates 

better performance. The lowest and second-lowest values are highlighted in red and blue, respectively. 

Supervision Method MAE ↓ 
  

  
A N S 

Prior-based Yang [41] 16.80 15.20 25.30 
 

Guo [42] 7.10 4.30 22.30 
 

Gong [18] 5.10 3.40 14.40 

Pairwise ST-CGAN [2] 9.50 8.60 14.40 
 

SP+M-Net [5] 4.41 3.64 8.84 

Shadow mask FSS2SR [6] 4.81 3.74 10.50 
 

G2R [43] 4.50 3.81 8.14 
 

MS [7] 5.48 4.52 11.32 

Unpaired LGSN [8] 5.02 4.02 10.64 
 

DRNet 4.39 3.68 8.21 

➤ Qualitative Analysis: 

A visual comparison across all datasets shows that DRNet produces: 

• Cleaner de-shadowed images, 

• Fewer residual artifacts, 

• Better preservation of object texture and color temperature. 

In ISTD, DRNet maintains fine details (like grass or wall textures) after shadow removal. 

In SRD, it handles soft shadows and color variations better than MaskShadowGAN. 

In USR, user study results showed DRNet-generated images appeared the most natural and visually realistic. 
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Fig. 4: Visual Comparison of Shadow Removal on ISTD and SRD 

 Ablation Study: 

An ablation study was conducted to assess the impact of each proposed component: 

“To verify the importance of each module, we conducted ablation experiments by removing individual 

components.” 

Model Variant ISTD MAE ↓ 

Baseline (no shadow mask) 6.45 

+ Shadow mask guidance 6.28 

+ Reciprocal learning 4.78 

+ Self-paced learning 4.67 

+ Attention Discriminator 4.51 

+ Color Maintenance Loss 4.39 

Table  

Ablation Study on Self-Paced Learning Strategy 

Models M1 through M10 represent different experimental configurations. Models M2–M9 utilize pseudo masks 

from the ISTD training set, whereas M10 employs the actual ground truth labels from ISTD for training. For 

each configuration, the BER (Balanced Error Rate) on the ISTD test set is evaluated and presented in the last 

row. The parameters rsr_srs and rer_ere represent the start and end thresholds of self-paced learning 

respectively. 

 

Model M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 

Label 

Type 

– pseudo pseudo pseudo pseudo pseudo pseudo pseudo pseudo ground 

truth 

rₛ – 1.0 0.95 0.92 0.93 0.94 0.93 0.93 0.95 1.0 

rₑ – 1.0 0.95 1.0 1.0 1.0 0.97 0.98 0.99 1.0 

BER ↓ 7.08 4.37 3.87 3.99 3.63 3.92 3.87 3.76 3.41 3.03 

 

➤ Limitations: 

Although DRNet performs well, it sometimes struggles with: 

• Black/dark objects being misclassified as shadows, 

• Colored shadows from stained glass or reflective surfaces. 

These limitations can be addressed in future work by including additional scene context or multispectral input. 

User Study: 
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For the USR dataset, since no ground truth exists, a user study was conducted with 10 participants. Each 

participant rated 30 de-shadowed images from various models. DRNet achieved an average score of 7.76, the 

highest among all models. 

 

   
Fig. 5: Shadow Removal Results on USR Dataset 
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CONCLUSION 

In this work, we proposed a Deep Reciprocal Learning (DRNet) framework to address the problem of shadow 

removal using unpaired image datasets. Unlike traditional supervised methods that require pixel-level annotations, 

our model learns to detect and remove shadows through a collaborative optimization between a shadow detector 

and a shadow remover. 

By treating the shadow mask as a latent variable and employing a three-phase training scheme with self-paced 

learning, DRNet effectively simplifies the complex shadow removal task into manageable sub-problems. 

Additional components like color-maintenance loss and attention-guided discriminators further enhance output 

quality. 

Experimental results on ISTD, SRD, and USR datasets demonstrate that DRNet outperforms state-of-the-art 

models in both quantitative accuracy and visual realism. The proposed framework shows great promise for real-

world deployment where large-scale paired data is unavailable. 
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In future work, we aim to extend this framework to handle colored shadows and explore its applicability in video-

based shadow removal and general image restoration tasks. 
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