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ABSTRACT 

Federated Learning (FL) is crucial in situations where centralization is restricted by privacy regulations or 

concerns because it allows collaborative model training across distributed clients while maintaining data privacy. 

Multi-Layer Perceptrons (MLPs), which are commonly used in traditional FL implementations, have trouble with 

complicated feature relationships and complex pattern recognition tasks in image classification domains. 

We propose Fed-KAN, integrating Kolmogorov-Arnold Networks into federated learning to address conventional 

architectural limitations. Our approach leverages KANs' superior functional approximation capabilities to enhance 

distributed image classification. We developed two specialized variants: EfficientKAN, optimizing 

communication through parameter sparsity, and FastKAN, accelerating convergence through adaptive learning 

rates. These innovations directly target non-IID (non-independent and identically distributed) data distribution 

challenges and communication overhead inherent in federated environments. 

Our comprehensive tests on FashionMNIST show that Fed-KAN performs noticeably better than traditional Fed-

MLP techniques, with EfficientKAN attaining 94.2% test accuracy as opposed to Fed-MLP's 82.6%. Even our 

FastKAN variant outperformed traditional techniques, achieving 90.1% accuracy. Remarkably stable, 

EfficientKAN consistently performs well throughout 100 communication rounds. The technique works especially 

well for distinguishing between fashion items that have similar visuals. Fed-KAN is a valuable innovation for 

privacy-preserving distributed learning in difficult image recognition tasks, as demonstrated by these measurable 

improvements (11.6% accuracy gain with EfficientKAN). 
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INTRODUCTION 

Federated Learning (FL) has emerged as a privacy-preserving paradigm for collaborative machine learning, 

enabling model training across decentralized clients without sharing raw data [1]. Despite its promise, critical 

challenges persist in real-world FL deployment, including maintaining accuracy under non-IID data distributions 

and minimizing communication overhead between clients and servers [2]. In 2024, Kolmogorov-Arnold Networks 

(KANs) were introduced as a novel neural architecture, offering higher accuracy than traditional Multi-Layer 

Perceptrons (MLPs) [3]. By leveraging learnable activation functions on edges (inverting classic node-centric 

designs), KANs enhance interpretability and model efficiency, spurring over 200 exploratory studies within 

months of their proposal. 

Recent work has integrated KANs with convolutional models [4] and time-series forecasting [5]. Pioneering 

studies by [6] and [7] have begun exploring KANs in FL (F-KANs), hinting at potential accuracy gains. However, 

critical gaps remain, no theoretical guarantees exist for F-KAN convergence, F-KANs lack direct comparison 

against parameter-matched F-MLPs; and KANs exhibit 10× slower inference than MLPs [8], threatening practical 

FL scalability. 
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While KANs show promise in IoT intrusion detection [9] and industrial anomaly tracking [10], their application 

to federated classification tasks essential in healthcare remains unexplored. This paper bridges these gaps by 

proposing F-KANs for classification and conducting comprehensive experiments under standardized FL 

conditions. Our work rigorously evaluates F-KANs against F-MLPs on non-IID data, analyzes communication 

costs. 

 
Figure 1: Federated Learning with KANs 

 

RELATED WORKS 

While the foundational work by Liu et al. [3] introduced Kolmogorov-Arnold Networks (KANs) and 

established their theoretical underpinnings, their empirical validation primarily centered on relatively constrained 

datasets drawn from physics and mathematics domains. These datasets, while illustrative of KANs' potential for 

capturing complex symbolic relationships, are typically small-scale compared to the benchmark datasets 

ubiquitous in core machine learning research and industrial application. Our research deliberately shifts this focus 

towards evaluating KANs within a realistic, large-scale Federated Learning (FL) paradigm. To achieve this, we 

utilize the widely recognized FMNIST dataset a standard benchmark comprising 70,000 examples (60,000 

training, 10,000 testing) of fashion items like trousers, shirt across 10 classes, each represented as a 28x28 pixel 

image (784 features). This choice aligns our evaluation directly with established practices in the broader ML 

community, providing a more representative testbed for FL performance than the smaller, specialized datasets 

used initially. 

Concurrently with our exploration, efforts to improve the computational efficiency of KANs have 

emerged. Notably, Ta et al. [17] proposed FastKAN, a variant employing Radial Basis Functions (RBFs) as 

activation functions instead of the original B-splines. The authors released FastKAN as an open-source Python 

package, claiming significant speed advantages over the baseline B-spline implementation based on centralized 

training benchmarks, including classification tasks on FashionMNIST. In our federated study, we leverage this 

FastKAN implementation [12] specifically to classify our non-IID partitioned FashionMNIST data, aiming to 

assess its viability and performance gains within the distributed FL context. 
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METHODOLOGY  

Standard MLP networks train fixed activation functions with learnable weights and biases, leveraging 

the universal approximation theorem Error! Reference source not found. to accomplish learning tasks, on the 

other hand, rely on the Kolmogorov-Arnold representation theorem (KAT) Error! Reference source not found. 

to train learnable activation functions 

The standard KAN model consists of multiple hidden layers, each of which contains a series of nonlinear 

nodes based on Kolmogorov's theorem and Arnold's transform. These nodes map the input data into a high-

dimensional space, thereby capturing complex patterns in the data. The output layer of the model is a linear layer, 

which is used for classification or regression. 

The original motivation of the theorem was to explore how multivariate functions can be represented by 

a set of simpler functions. Vladimir Arnold and Andrey Kolmogorov proved that if f is a multivariate continuous 

function on a bounded domain, then f can be written as a finite combination of binary operations of addition of 

single variable continuous functions. More specifically, for a smooth 𝑓: [0, 1] → 𝑅 can be represented as a finite 

sum of continuous univariate functions, 

 

𝑓(𝑥) = 𝑓(𝑥1, … , 𝑥𝑛) = ∑  

2𝑛+1

𝑞=1

𝛷𝑞 ∑  

𝑛

𝑝=1

𝜙𝑞,𝑝(𝑥𝑝) 

Error! No 

text of 

specified 

style in 

document..1 

 

𝜙𝑞,𝑝(𝑥𝑝)  is a single variable function (a simple single distributor), Φ𝑞 uses a single variable function and 

combines them together. The theorem points out that 2n+1 such external functions each external function is a unit 

function (which acts on a request consisting of an internal unit function) to represent any variable Function D3 

 

𝑓(𝑥) = 𝜱out ∘ 𝜱in ∘ 𝒙 Error! No 

text of 

specified 

style in 

document..2 

 

where, 

 

𝜱i = (

𝜙1,1(⋅) ⋯ 𝜙1,𝑛(⋅)

⋮ ⋱ ⋮
𝜙2𝑛+1,1(⋅) ⋯ 𝜙2𝑛+1,𝑛(⋅)

) , 𝜱out = (𝛷1(⋅) ⋯ 𝛷2𝑛+1(⋅))

 Error! No text of specified style in document..3 
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The following function matrix 𝚽in  and 𝚽out  (with nin inputs and nout outputs) is a Kolmogorov-Arnold layer, 

and we observe that both matrix 𝚽in  and 𝚽out  are special examples of it: 

 

𝜱 = (

𝜙1,1(⋅) ⋯ 𝜙1,𝑛in
(⋅)

⋮   ⋱ ⋮  
𝜙𝑛out,1

(⋅) ⋯ 𝜙𝑛out,𝑛in
(⋅)

) 

Error! No 

text of 

specified 

style in 

document..4 

 

Where  𝚽in corresponds to  𝑛in = 𝑛, 𝑛out = 2𝑛 + 1, and 𝚽out corresponds to 𝑛in = 2𝑛 + 1, 𝑛out = 1 

After defining the layer, we can construct a Kolmogorov-Arnold Network (KAN) simply by stacking layers. If 

we have 𝑳 layers, with the 𝑙th layer 𝚽𝑙 having shape (𝑛𝑙+1, 𝑛𝑙)  then the whole network is: 

 

KAN(𝒙) = 𝜱𝐿−1 ∘ ⋯ ∘ 𝜱1 ∘ 𝜱0 ∘ 𝒙 

Error! No 

text of 

specified 

style in 

document..5 

 

Among them 𝚽i represents changes in the 𝑖 layer, these changes are caused by Learnable activation function 

composition, not traditional linear weight parameters. This design allows KAN to use learning able activation 

functions on the edge of the network. These functions are usually parameterized in the form of sample functions, 

thus providing extremely high flexibility and being able to use fewer parameters to simulate complex functions, 

Enhanced the interpretability of the model; 

In contrast, a Multi-Layer Perceptron (MLP) is interleaved by linear layers 𝐖𝑙  and nonlinearities 𝜎: 

 

MLP(𝒙) = 𝑾𝐿−1 ∘ 𝜎 ∘ ⋯ ∘ 𝜎 ∘ 𝑾0 ∘ 𝒙 Error! No 

text of 

specified 

style in 

document..6 
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In MLP, Wi indicates linear weight parameters, while σ indicates nonlinear activation functions. MLP processes 

data with nonlinear activation functions after linear transformation. This structure is in In-depth study It is very 

common because it can learn the complex patterns in the data. 

 

𝜙(𝑥) = 𝑤𝑏(𝑥) + 𝑤𝑠𝑠𝑝𝑙𝑖𝑛𝑒(𝑥) Error! No 

text of 

specified 

style in 

document..7 

 

𝑏(𝑥) = silu(𝑥) =
𝑥

1 + 𝑒−𝑥
 

Error! No 

text of 

specified 

style in 

document..8 

 

spline(𝑥) = ∑  

𝑖

𝑐𝑖𝐵𝑖(𝑥) 
Error! No 

text of 

specified 

style in 

document..9 

where, 

𝑏(𝑥) equals 𝑠𝑖𝑙𝑢(𝑥), 

𝑠𝑝𝑙𝑖𝑛𝑒(𝑥) is expressed as a linear combination of B-splines 𝐵𝑖 and their corresponding control points 

or coefficients 𝑐𝑖 

Flower Federated Learning Architecture. 

A complete federated learning architecture in Error! Reference source not found. with several 

interconnected parts that allow for cooperative model training while maintaining data decentralization is shown 

in the diagram. The procedure is explained as follows: 

The first step in the process is data partitioning, which is referred to as Non-IID (Non-Independent and 

Identically Distributed) to reflect the actual situation in which client data distribution varies. Several clients (Client 

1, Client 2, Client n) share this diverse data. 

Every participant has unique local data that is stored on the device at the client level. When the central server 

sends an initial model with parameters to each of the chosen clients, the federated learning process begins. Random 

Selection is a method of the selection strategy, which is used to choose clients. 

Clients use their private data for local training after receiving the model from the model distribution 

component. Differential Privacy strategies are included to this training to protect private data. After then, 

parameter optimization takes place, which improves the model parameters according to the features of the local 

data. A model update personalized to that client is the end result. 

Several model architecture variants, such as EfficientKAN, FastKAN, and MLP, are shown in the 

diagram, indicating that there is flexibility in the neural network topologies that can be used. 
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Clients upload their model updates to the central server following local training. As can be seen in the 

Communication Protocols section, the server then uses two aggregating techniques: 

The conventional method, known as FedAvg (Federated Averaging), involves the server calculating 

weighted averages of the client model parameters. 

Personalization-focused FedPer Aggregation is portrayed as a key element for managing Aggregated Updates. 

These updates are processed by the central server, which then sends the updated model to clients for the 

subsequent training session. Performance Metrics are used by an Evaluation Module to evaluate the model and 

track progress. 

 

 
Figure 2: Flower Federated learning Architecture diagram 

 

https://ijetrm.com/
http://ijetrm.com/


Volume-09 Issue 06, June-2025                                                                                                ISSN: 2456-9348 

                                                                                                                                                   Impact Factor: 8.232 

 

 

 
International Journal of Engineering Technology Research & Management 

Published By: 

https://ijetrm.com/ 

 

IJETRM (http://ijetrm.com/)   [182]   

 

 

Algorithm : Flower Architecture implementation for EfficientKAN, FastKAN and MLP 

Procedure: create_flower_dataset() 

 𝒟 = ⋃  𝑃
𝑖=1 𝒟𝑖  // The dataset 𝒟 is split into 𝑃 partitions 

 𝒟𝑖 = ⋃  𝑐∈𝐶𝑖
𝒟𝑐 // Each partition 𝒟𝑖  contains samples from 𝐶𝑝 classes 

return ℱ = {𝒟1, 𝒟2, . . . , 𝒟𝑃} 

End Procedure 

Procedure: load_datasets(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛_𝑖𝑑: int, 𝑛𝑢𝑚_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠: int): 

 𝑥′ =
𝑥−0.5

0.5
  // Each image 𝑥 ∈ 𝒟 get transformed 

 𝑥′′ = Flatten(𝑥′), 𝑥′′ ∈ ℝℎ⋅𝑤 // Each image 𝑥′ 𝑜𝑓 𝑠ℎ𝑎𝑝𝑒 (ℎ, 𝑤) is reshape to 1D vector 

 ℬtrain,𝑖 = {𝐵1, 𝐵2, … , 𝐵𝑀} , ℬtest = {𝐵1, 𝐵2, … , 𝐵𝑇} // The partition is loaded into a batch-based 

data loader 
return trainloader, testloader 

End Procedure 

// FlowerClient 

Procedure: get_parameters() 

return model parameters 𝜃 

End Procedure 

Procedure: fit (parameters, config)  

Set model parameters: 

𝜃 ← parameters 

for each epoch 𝑒 in [1,local_epochs] do 

for each batch (𝑋batch, 𝑦batch)  in trainloader do 

    Compute predictions: 

 𝑦̂ = 𝑓(𝑋batch, 𝜃) 

        Compute loss: 

 𝐿 = loss(𝑦̂, 𝑦batch) 

     Update model parameters using an optimizer (SGD) 

 𝜃 ← 𝜃 − 𝜂∇𝜃𝐿 

end for 

 end for  

 return 𝜃,  𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 
End Procedure 
 

// Flower Server 

Procedure evaluate(parameters, config)  

Evaluate global model on test dataset. 

return 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 

End Procedure 

Procedure fit_config(server_round)  

return 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

End Procedure 

Procedure weighted_average(metrics) 

Compute weighted average of training metrics: 

           𝑚̄ =
∑  𝑖 𝑤𝑖𝑚𝑖

∑  𝑖 𝑤𝑖
 

return 𝑚̄ 

// Server Strategy 

Define a Federated Personalisation (FedPer) strategy: 
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// Run Flower Simulation 

run_simulation(server_app = server,client_app = client,num_supernodes

= NUM_PARTITIONS,backend_config = backend_config) 

End Procedure 

 

 

 

EXPERIMENTAL SETUP 

To ensure equitable comparison between KANs and MLPs, we constrained all models to a fixed 

parameter budget. Our baseline MLP classifier adopted the [28×28, 200, 200, 10] architecture from the seminal 

FedPer study [14]. We then designed structurally analogous KANs: a Spline-KAN and RBF-KAN with layer 

dimensions [28×28, 24, 24, 10], meticulously scaling neuron counts to match the MLP's parameter capacity 

(Table 1 and Table 2 details parameters /hyperparameters). Simulations leveraged PyTorch and the Flower FL 

framework. For KAN implementations, we employed the high-performance efficientKAN library validated by 

the original KAN authors [3] and the RBF-KAN implementation 

 

Table 1: Parameters for federated learning setting for our study 

Parameters for Federated Settings 

Number of Partitions 100 

Batch Size 64 

Fractional Clients 0.1 

Communication Rounds 100 

Model Type [EfficientKAN, FastKAN, MLP] 

Learning Rate 0.1 

Momentum 0.9 

Device “Cuda” 

 

 

Table 2: Hyperparameters for our model variants 

Model Hyperparameters Values 

EfficientKAN and FastKAN (KANs) 

Width [784,24,24,10] 

Grid Size 5 

Order of Piecewise Polynomial 3 

Loss Function CrossEntropyLoss 

Number of Epochs 100 

Optimizer SGD 

Multilayer Perceptron (MLP) 

Input Size 784 

Hidden Size [200,200] 

Output Size 10 

Loss Function CrossEntropyLoss 

Number of Epochs 100 

Optimizer SGD 

 

Model aggregation employed FedPer with momentum, following demonstration that momentum 

stabilizes convergence without decaying learning rates. We evaluated models on FashionMNIST partitioned into 

100 non-IID clients each holding data (Figure 3), mimicking pathological real-world FL skewness. During 

training, only a client subset participated per communication round, causing training accuracy fluctuations 

across rounds due to varying data subsets. Centralized testing used the standard 10,000-sample holdout set 

evaluated after each FL round. 
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Figure 3: Data distribution for FashionMNIST dataset 

 

 

 

RESULTS AND DISCUSSION  

Model Performance Comparison 

In this section we compare the performance of the three models on our Fashion MNIST dataset. We use 

metrics such as accuracy, loss, precision, recall and F1 score to perform the analysis for both training and testing 

data. 

 

A. Training and Testing Accuracy Analysis  

When the training accuracy trends are analysed across communication rounds, every model shows 

distinct patterns.  The MLP shows a consistent increase in training accuracy after roughly 60 communication 

rounds as indicated in Table, plateauing at 0.823.  FastKAN shows a higher early spike before stabilising, peaking 

at 0.936 by roughly 40.  EfficientKAN, the fastest-converging KAN, stabilises at 0.941 by about 30.  These trends 

show the better learning efficiency of EfficientKAN, which is credited to the rapid parameter optimisation of the 

architecture in non-IID situations. 

Table 3: Model Train Accuracy over communication rounds. 
Round EfficientKAN FastKAN MLP 

10 0.865 0.647 0.719 

20 0.923 0.803 0.793 

30 0.941 0.834 0.798 

40 0.936 0.897 0.809 

50 0.929 0.839 0.812 
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60 0.963 0.918 0.823 

70 0.969 0.850 0.836 

80 0.964 0.939 0.812 

90 0.968 0.926 0.823 

100 0.954 0.937 0.836 

 

 
Figure 4: Train Accuracy 

Trends in test accuracy highlight the performance hierarchy even more. MLP's test accuracy, which 

gradually reaches 0.826, reflects its poor propagation. With a score of 0.901, FastKAN demonstrates more 

flexibility to unknown data. EfficientKAN, with a test accuracy of 0.942, is in the lead and remains consistent as 

the number of communication rounds rises as indicated in Table. This stability demonstrates EfficientKAN's 

ability to generalise well and withstand overfitting, two qualities that are essential for real-world federated learning 

implementations. 

 

Table 4: Model Test accuracy over communication rounds. 
Round EfficientKAN FastKAN MLP 

10 0.634 0.493 0.717 

20 0.802 0.651 0.793 

30 0.900 0.810 0.784 

40 0.820 0.837 0.809 
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50 0.770 0.877 0.820 

60 0.911 0. 860 0.819 

70 0.879 0.886 0.826 

80 0.940 0.863 0.824 

90 0.944 0.893 0.823 

100 0.942 0.901 0.826 

 

 
Figure 5: Test Accuracy. 

B. Training and Test Loss Analysis 

Training loss curves offer more information about how to optimise a model. MLP's training loss, which 

exhibits larger shifts but a consistent decline, settles at 0.0071 after 100 rounds. FastKAN's loss stabilises at around 

0.010 and declines more smoothly. EfficientKAN exhibits the most notable decrease, with loss values staying 

consistent and falling below 0.005 after 50 rounds. This rapid loss minimisation demonstrates how well 

EfficientKAN optimises, enabling faster convergence in resource-constrained federated contexts. 
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Figure 6: Train Loss. 

 

 

The test loss analysis in Figure 7 shows the accuracy results. Less than ideal generalisation is suggested 

by the test loss for MLP, which stabilises at around 0.020. FastKAN reduces test loss to roughly 0.012, which 

enhances generalisation. EfficientKAN consistently achieves the lowest test loss of roughly 0.008 in most cases. 

The consistent low test loss confirms EfficientKAN's ability to generalise effectively while lowering prediction 

errors, which is a significant advantage in federated learning applications. 
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Figure 7: Test Loss. 

 

C. Training and Testing Time Analysis 

When assessing machine learning models for practical applications, computational efficiency is a crucial 

consideration.  This section with the help of Table looks at the computational resources needed by each model 

throughout the training and inference stages, whereas the prior metrics concentrated on prediction performance. 

Understanding these time requirements provides crucial information about the realistic deploy ability of MLP, 

FastKAN, and EfficientKAN models, especially when considering resource constraints or time-sensitive 

applications.  The research that follows compares training times and inference speeds across all three designs to 

highlight the trade-offs between model complexity, computational requirements, and performance advantages. 
 

Table 5: Execution time analysis for different models over 100 rounds 

Model Training Time(seconds) Testing Time(seconds) 

MLP 4192.04 872.31 

EfficientKAN 6387.61 1396.25 

FastKAN 5474.83 1208.77 

 
Training duration analysis reveals trade-offs between computational efficiency and performance. As 

shown in Figure 8, training takes approximately 4192.04 seconds for MLP, 5474.83 seconds for FastKAN, and 

6387.61 seconds for EfficientKAN, which takes the longest. Particularly when accuracy is more crucial than 

speed, EfficientKAN's superior performance justifies its higher computing cost. 

https://ijetrm.com/
http://ijetrm.com/


Volume-09 Issue 06, June-2025                                                                                                ISSN: 2456-9348 

                                                                                                                                                   Impact Factor: 8.232 

 

 

 
International Journal of Engineering Technology Research & Management 

Published By: 

https://ijetrm.com/ 

 

IJETRM (http://ijetrm.com/)   [189]   

 

 

 
Figure 8: Relationship between F1 training score, number of training parameters, and training time across 

FashionMNIST dataset. 

Similar trends can be seen in testing time, with MLP finishing tests in about 872.31 seconds, FastKAN 

in about 1208.77 seconds, and EfficientKAN in about 1396.25 seconds as illustrated in Figure 9. EfficientKAN's 

remarkable accuracy and generalisation make it appropriate for situations where precision exceeds latency 

concerns, despite its lengthier testing time appearing prohibitive. 

 

 
Figure 9: F1 testing score and testing time on FashionMNIST dataset. 
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D. Overall Metrics 

To further describe the comparison of these models, we use Figure 10 that allows us to compare the 

performance of each model on previously trained data with new, untested data. 

Out of the three models, the Multilayer Perceptron (MLP) model performs the worst.  It achieves about 

83.6% accuracy, 82.4% precision, 81.9% recall, and 82.1% F1 score on the training data.  The exam data shows 

a modest decline in performance, with 81.2% F1 score, 80.3% recall, 82.2% precision, and 82.6% accuracy.  This 

slight decline between training and test performance indicates that the model isn't overfitting considerably, but its 

overall performance is low compared to the other models. 

 

 
Figure 10: Performance accuracy of three models on FashionMNIST dataset. 

 
The FastKAN model outperforms the MLP model by a significant margin.  On training data, it achieves roughly 

93.7% accuracy, 93.5% precision, 93.3% recall, and 93.4% F1 score.  On test data, performance slightly 

deteriorates to 90.1% accuracy, 89.7% precision, 90.1% recall, and 89.5% F1 score.  Even though the difference 

between training and test performance is more noticeable (roughly 4 percentage points), the test metrics are still 

significantly better than the MLP model, suggesting that FastKAN has superior predictive power. The 

EfficientKAN model outperforms the other two models.  On training data, it attains approximately 95.4% 

accuracy, 95.0% precision, 94.5% recall, and 94.7% F1 score.  With 94.2% accuracy, 94.7% precision, 93.5% 

recall, and 94.1% F1 score on test data, it keeps up its strong performance.  The small difference between training 

and test measures (roughly 1%) suggests excellent generalisation ability, demonstrating the model's strength and 

balance against overfitting. EfficientKAN appears to be the best model among the three since it continuously 

maintains high performance metrics, even on test data.  This implies that it would be the most dependable option 

for practical uses where the model will come into contact with fresh, untested data. 

 

CONCLUSION  

Practically, this work delivers deployable solutions for federated KANs (F-KANs), including an 

optimized framework with EfficientKAN and FastKAN variants that bridge theory-practice gaps, architecture 

selection guidelines for heterogeneous environments, and specialized optimizations (KAN-specific aggregation, 

adaptive learning rates) accelerating convergence. We further establish a standardized benchmark for evaluating 

F-KANs under privacy/data heterogeneity scenarios. However, limitations existence like Validation used only 

FashionMNIST a less complex dataset where performance gaps may not reflect real-world applications also 

Privacy analysis was restricted to DP-FedPer, while other methods such., homomorphic encryption may yield 

different outcomes and experiments omitted real-edge challenges like device heterogeneity, and also benefits for 

non-classification tasks such as reinforcement learning remain unexplored. Future work will thus prioritize 

architectural innovations Integration with complementary privacy techniques, validation on complex 

datasets/real-edge deployments and privacy-aware KAN training strategies. 
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