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Abstract:  

Kepler’s laws of planetary motion are a set of three laws describing the motion of planets around the Sun. 

German mathematician and astronomer Johannes Kepler published these laws between 1609 and 1619 based on 

observations made by his mentor, Danish astronomer Tycho Brahe. Although Kepler applied the three laws to 

planets in the solar system, they can be extended to planets outside the solar system, asteroids, and artificial 

satellites. These laws are collectively known as First Law, Second Law, and Third Law. 
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Description 

The 17th century astronomer Johannes Kepler pointed out three patterns in the motion of the planets. 

They’re called Kepler’s laws. Kepler’s first law is that the planets trace out ellipses as they go around the 

Sun. The orbits look like circles, but they’re not. They’re slightly flattened into ovals, and even the Sun is 

off-centeKepler’s laws of planetary motion are a set of three laws describing the motion of planets around the 

Sun. German mathematician and astronomer Johannes Kepler published these laws between 1609 and 1619 

based on observations made by his mentor, Danish astronomer Tycho Brahe. Although Kepler applied the three 

laws to planets in the solar system, they can be extended to planets outside the solar system, asteroids, and 

artificial satellites. These laws are collectively known as First Law, Second Law, and Third Law.  
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1.First Law  

Statement: “All planets orbit around the Sun in a path described by an ellipse with the Sun at one of its two 

foci“. 

Also known as the Law of Ellipses, Kepler concluded that all solar system planets have elliptical orbits. The 

Sun’s center is at one of the foci. When a planet revolves around the Sun, its distance from the Sun constantly 

changes. The point of the closest approach to the Sun is the perihelion, and the furthest point is the aphelion. 

Kepler’s first law is used to study the trajectories of planets, asteroids, and comets by applying the ellipse 

equations.  

The final post in a series of three covering Kepler’s Laws of Planetary Motion. In this post we’ll look at law 3 or 

‘The Law of Periods’ – The square of the period of any planet is proportional to the cube of the semimajor axis 

of it’s orbit. 

Johannes Kepler’s Third Law of Planetary Motion, also known as the “harmonic law,” is a fundamental 

principle that relates the period of a planet’s orbit to its distance from the sun. This law helped to 

revolutionize our understanding of the solar system and has been a cornerstone of astronomy ever since.  

 

The Three Laws of Planetary Motion 
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Kepler's Laws of Planetary Motion 

Ellipses 

To be able to understand Kepler’s laws, let’s first quickly look at the geometry of ellipses. Ellipses are curves 

that can be described by two focus points, or focal points. A circle is a particular case of an ellipse with only one 

focus point at its center, where the distance between it and every point on the circle’s perimeter is the same. 

Ellipses look like a squashed circle. The way that ellipses are described is by the quantity called eccentricity (E). 

A shape's eccentricity defines the kind of conic section it is: zero for a circle, zero to one for an ellipse, one for a 

parabola, and greater than one for a hyperbola. 

 
How the eccentricity affects the shape of an ellipse 

Take a look at the diagram below with ellipses with an eccentricity of 0.6. The leftmost ellipse in the diagram 

has the locations of its center and two focal points marked. The foci are at unique locations inside an ellipse. 

The sum of the distances from each focus to any other point on the ellipse is the same for a given ellipse. The 

semi-major (SMJA) and semi-minor axes (SMNA) are the longest and shortest distances from the ellipse’s 

center to the perimeter. The apoapsis (A) and periapsis (P) are the longest and shortest distances from one focal 

point to the perimeter along the semi-major axis. 
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The definitions of ellipticity, semi-major axis, semi-minor axis, periapsis, and apoapsis. 

There are many geometrical relationships between the eccentricity, semi-major axis, semi-minor axis, periapsis, 

and apoapsis; the diagram above contains a few equations of these relationships. The two foci points converge 

to the center when an ellipse loses ellipticity and becomes a circle. Not only that, notice how the semi-major 

axis, semi-minor axis, periapsis, and apoapsis all become the same length for circles. 

 

Kepler's First Law 

Kepler’s first law states that the orbital path of a planet around the Sun is an ellipse with the Sun at one of the 

focal points. The early geocentric and heliocentric models of the Solar System break this law because they 

assumed the planets had circular orbits. 

Kepler’s First Law. The orbital path of an object around a body is shaped like an ellipse with the body at one of 

the two foci. This orbital path has an eccentricity of 0.4. Image by John H Boisvert for Slooh 

This law tells us that the distance between the planet and the Sun is not constant. A planet is at its closest 

approach at perihelion and its furthest point at aphelion. Note that these terms are similar to periapsis and 

apoapsis except with different suffixes. The suffix of peri-/apo- changes depending on the focal point (see table 

below), but the geometric meaning remains the same. Also note that, although the diagram shows a dramatic 

eccentricity of 0.4, most planets in the solar system have very low eccentricities. In other words, their orbital 

paths are nearly, but not precisely, circular. 

You can observe Kepler’s first law in action when looking at the Earth-Moon system. The Moon orbits the Earth 

in an ellipse, with the Earth at a focal point. That means that the distance between the Earth and Moon is 

continuously changing. A supermoon occurs when a Full Moon is near perigee, and a micromoon happens when 

the Full Moon is near apogee. 

 

Kepler's Second Law 

Kepler’s second law states that a line from a planet to the Sun sweeps out equal areas during equal time 

intervals. 

The amount of time it takes for the planet to travel the perimeter of each shaded region is the same, and the area 

that those journeys carve out is also the same. This law means that the planet must be moving slower when 

traveling along the perimeter of the shaded region on the left than along the right region. In general, a planet 

slows down when it nears apoapsis, and it speeds up as it nears periapsis. 
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Kepler's Second Law. The area of both shaded regions, "A," and the length of time the orbiting object takes 

along each arc is the same. Image by John H. Boisvert for Slooh 

 

 

Kepler's Third Law 

Kepler’s third law states that the square of the orbital period is directly proportional to the cube of the semi-

major axis of its orbit. Writing this in equation form gives the following: 

 
In the equation, “p” is the orbital period (the time it takes the object to complete a full orbit), “a” is the semi-

major axis, and “C” is the constant of proportionality. The constant is the same for every planet in the solar 

system. Graphically, this means that, when the square of the orbital period and the cube of the semi-major axis 

are plotted, they should form a linear graph, as shown below. 
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A plot of the square of the orbital period vs. the cube of the semi-major axis for the Solar System planets.  

The wandering planets follow the same physical laws as all matter in the universe. In this quest, you will 

discover how humanity unveiled the extraordinary physical laws of orbital motion. You'll learn about Johannes 

Kepler and his three laws of planetary motion. You'll also learn about Sir Isaac Newton and his theory of 

gravitation. By the end of the quest, you will discover the similarities between Kepler's laws and Newton's 

gravity, and how these laws apply to our tiny corner of the galaxy—the Solar System. 

Slooh’s Online Telescope is a learning platform designed to support any educator in teaching astronomy to meet 

NGSS requirements by collecting and analyzing real-world phenomena. No previous experience with telescopes 

is necessary to quickly learn how to use Slooh to explore space with your students. 

 

Kepler’s Third Law states that the square of the orbital period of a planet is proportional to the cube of its 

average distance from the sun. In other words, if you square the time it takes a planet to complete one orbit 

around the sun and divide it by the cube of its distance from the sun, you will always get the same value 

for all the planets in our solar system. 

This law was a significant departure from the traditional belief at the time that planets moved in perfect circles 

around the sun at a constant speed. Kepler’s observations of the motion of planets had led him to conclude that 

their speed changed as they moved through their elliptical orbits, and their period depended on their distance 
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from the sun. He then extended his analysis to other planets and found that their orbital periods followed this 

same relationship.  

Kepler’s Third Law was crucial in determining the relative distances of the planets from the sun. By measuring 

the orbital periods of the planets and knowing their average distances from the sun, astronomers could calculate 

the distance of any planet from the sun. This allowed astronomers to construct accurate models of the solar 

system and paved the way for further research into the nature of the universe. 

One of the most significant implications of Kepler’s Third Law was that it helped establish a relationship 

between the size of a planet’s orbit and its distance from the sun. The farther a planet is from the sun, the longer 

it takes to complete one orbit. This relationship also helps explain why the outer planets in our solar system are 

much larger than the inner planets. 

Neptune – The predicted planet 

Kepler’s Third Law also played a critical role in the discovery of Neptune. In the mid-19th century, astronomers 

noticed that the orbit of Uranus did not follow the predicted path, suggesting that there was another planet 

beyond it. Using Kepler’s Third Law, astronomers were able to calculate the position of this hypothetical planet, 

and in 1846, Neptune was discovered in the predicted location. 

Today, Kepler’s Third Law remains a critical tool for astronomers in their study of the solar system and other 

celestial bodies. It allows us to calculate the distances of planets from their stars and has been used to discover 

hundreds of exoplanets in other solar systems. 

Johannes Kepler’s Third Law of Planetary Motion, or the harmonic law, is a fundamental principle that relates 

the period of a planet’s orbit to its distance from the sun. This law helped to revolutionize our understanding of 

the solar system and has been a cornerstone of astronomy ever since. By establishing a relationship between the 

size of a planet’s orbit and its distance from the sun, Kepler’s Third Law has played a critical role in our 

understanding of the universe. 

Kepler’s Third Law Mathematics 

As with the parts one and two of this series, it’s not vital to understand the mathematics of the third law to gain a 

high level understanding of the concept, but again I’ve included it here for you to read through if you would like 

to. 

Kepler’s third law can be derived mathematically as follows: 

Let T be the period of the planet’s orbit, which is the time it takes to complete one revolution around the sun. 

Let a be the semi-major axis of the planet’s elliptical orbit, which is the longest radius of the ellipse. 

We can express Kepler’s third law as: 

 

http://www.ijetrm.com/
https://www.ijetrm.com/


Vol-05 Issue 03, March-2021                                                                                      ISSN: 2456-9348 

                                                                                                                                 Impact Factor: 6.736 

 

 

International Journal of Engineering Technology Research & Management 
www.ijetrm.com 

 

IJETRM (https://www.ijetrm.com/)    [176] 

 
 

To derive this law, we start with Newton’s law of gravitation, which states that the force of attraction between 

two objects is proportional to the product of their masses and inversely proportional to the square of their 

distance. For the case of a planet orbiting the sun, we can write: 

 
where G is the gravitational constant, M is the mass of the sun, m is the mass of the planet, and r is the distance 

between them. 

Since the force of gravity is the centripetal force that keeps the planet in orbit, we can equate it to the centripetal 

force: 

 
where v is the velocity of the planet. 

Equating these two expressions for F, we get: 

 
Simplifying, we get: 

 
Now, we can express the semi-major axis a in terms of r as: 

 
where e is the eccentricity of the elliptical orbit, which is a measure of how much it deviates from a circle. 

Substituting this expression for r into the equation for v^2, we get: 

 
We can rearrange this equation as: 

 
This is Kepler’s third law in its final form, which states that the square of the orbital period of a planet is 

proportional to the cube of the semi-major axis of Johannes Kepler pointed out three patterns in the motion of 

the planets 
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The Law of Harmonies 

Kepler's third law - sometimes referred to as the law of harmonies - compares the orbital period and radius of 

orbit of a planet to those of other planets. Unlike Kepler's first and second laws that describe the motion 

characteristics of a single planet, the third law makes a comparison between the motion characteristics of 

different planets. The comparison being made is that the ratio of the squares of the periods to the cubes of their 

average distances from the sun is the same for every one of the planets. As an illustration, consider the orbital 

period and average distance from sun (orbital radius) for Earth and mars as given in the table below. 

Planet 
Period 

(s) 

Average 

Distance (m) 

T2/R3 

(s2/m3) 

Earth 3.156 x 107 s 1.4957 x 1011 2.977 x 10-19 

Mars 5.93 x 107 s 2.278 x 1011 2.975 x 10-19 

  

Observe that the T2/R3 ratio is the same for Earth as it is for mars. In fact, if the same T2/R3 ratio is computed for 

the other planets, it can be found that this ratio is nearly the same value for all the planets (see table below). 

Amazingly, every planet has the same T2/R3 ratio. 

Planet 
Period 

(yr) 

Average 

Distance (au) 

T2/R3 

(yr2/au3) 

Mercury 0.241 0.39 0.98 

Venus .615 0.72 1.01 

Earth 1.00 1.00 1.00 

Mars 1.88 1.52 1.01 

Jupiter 11.8 5.20 0.99 

Saturn 29.5 9.54 1.00 

Uranus 84.0 19.18 1.00 

Neptune 165 30.06 1.00 

Pluto 248 39.44 1.00 

(NOTE: The average distance value is given in astronomical units where 1 a.u. is equal to the distance from the 

earth to the sun - 1.4957 x 1011 m. The orbital period is given in units of earth-years where 1 earth year is the 

time required for the earth to orbit the sun - 3.156 x 107 seconds. ) 

  

Kepler's third law provides an accurate description of the period and distance for a planet's orbits about the sun. 

Additionally, the same law that describes the T2/R3 ratio for the planets' orbits about the sun also accurately 

describes the T2/R3 ratio for any satellite (whether a moon or a man-made satellite) about any planet. There is 

something much deeper to be found in this T2/R3 ratio - something that must relate to basic fundamental 

principles of motion. In the next part of Lesson 4, these principles will be investigated as we draw a connection 

between the circular motion principles discussed in Lesson 1 and the motion of a satellite. 

 
Circles and Ellipses 

Mathematically, a circle is defined as the set of all points that are the same distance from some chosen center. 

Put a pin in a corkboard, then take a piece of string and tie both ends to the pin, making a loop. Then, put a pen 

in the loop, stretch the string tight, and sweep around the board, drawing as you go. You’ve just made a circle, 

centered on the pin. 

For an ellipse, you need 2 pins, and you tie the ends of the string to the pins, with some slack. And stretch the 

string tight with the pen, and sweep around the board, drawing as you go. What you get in that case is an ellipse. 

The 2 pins are the focus points, or foci, of the ellipse. For all the points on the ellipse, the distance to the first 

focus, plus the distance to the second focus, is a constant, that’s the length of the string, in our construction. 

The length of that string is also equal to the length of the long axis of the ellipse, the major axis. If we unpinned 

the string and straightened it out, it would reach exactly across the major axis. We conclude that for any point on 

an ellipse, the distance to one focus plus the distance to the other focus equals the length of the major axis. 

Radii and Areas 

To make a circle, we only needed to make one choice: the radius, which we’ll call a. For an ellipse, the 

equivalent is the radius along the major axis, which we’ll also label a, and we’ll call that the semi-major axis. 

But with an ellipse, we also have to choose the distance between the center and either focus. 
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We can choose whatever distance we want, as long as it’s smaller than a. Tradition dictates that we express that 

distance as a times e, where e is a number smaller than one, which is called the eccentricity. When e is zero, the 

foci coincide at the center, and we go back to a circle of radius a; as e gets larger, and closer to one, the foci 

separate and we get a more elongated ellipse. 

For a circle, we know area equals pi a-squared. For an ellipse, it turns out to be pi a-squared times the square 

root of one minus-e-squared. 

A Coordinate System 

To understand the mathematical equation for an ellipse, in polar coordinates, let’s start by introducing a 

coordinate system. We’ll put the origin at one of the foci, and we’ll lay down x and y axes along the major and 

minor axes. To specify the points on the ellipse, we would use polar coordinates: r is the distance from the 

origin, and theta is the angle measured counter-clockwise from the x axis. 

First, let’s think about what we expect. It’s going to be a rising and falling function, for theta equals zero, r has 

its minimum value of a minus ae, that’s a times one minus-e. As we dial theta up to higher values, r increases, 

and at theta equals pi, 180°, r achieves its maximum value of a times one plus-e. Then it shrinks back down 

as theta wraps around to 2pi. 

To find the equation, we start with the fact that at any point on the ellipsis, the sum of distances to the foci is 

equal to the major-axis length, 2a. We can write that as r plus r-prime equals 2a, where r is the distance to the 

focus at the origin, and r-prime is the distance to the other focus. But that’s not such a convenient equation. We 

want it purely in terms of r and theta, not r-prime, so how do we get rid of the r-prime? We use the Law of 

Cosines. 

The Law of Cosines 

The Pythagorean theorem says c-squared is equal to a-squared plus b-squared, where a, b, and c are the lengths 

of the sides of a right triangle. The Law of Cosines is the generalization to any triangle. It says that for any 

triangle, c-squared equals a-squared plus b-squared minus 2ab times the cosine of gamma, where gamma is the 

angle across from the c-side. 

We’ll apply it to our triangle, with r-prime as our c-side. So, we have r-prime squared equals r-squared plus 

2ae -squared minus 2r times 2ae times the cosine of angle opposite r-prime, which is pi minus theta. And the 

cosine of pi minus theta is minus the cosine of theta. At the end, we find r equals a times one minus e-squared 

divided by one plus e cos theta. That’s our equation! 

Semi Major Axis and Eccentricity 

So, does it make sense? When the eccentricity is zero, the equation reduces to r equals a times one over one, 

that’s just r equals a; that’s a circle. And when e is not zero, and we dial theta around the clock, cos theta goes 

from one to minus one and back to one, the denominator starts big and gets small, then big again. That, too, 

makes sense; it says r oscillates between a minimum value at theta equals zero and a maximum at pi. 

In particular, if we plug in theta equals 0, we get a times one minus e-squared over one plus e. And since one 

minus e-squared is one plus e times one minus e, the one plus e’s cancel out, and we’re left with a times one 

minus-e, which is what we expected. That’s the minimum distance from the focus. Likewise, 

when theta equals pi, we get the expected maximum distance of a times one plus-e. 

So, what Kepler noticed, his ‘first law’, is that all the planets move on ellipses, with the Sun not at the center but 

rather at one of the foci. Each planet has its own value for the semi major axis and eccentricity. 

Application: C 
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Conclusion: Kepler's laws of planetary motion govern the orbits of planets around the Sun. At first, Kepler 

expected the planets to move around the Sun in perfect circles, but after years of observation he found that this 

was not true. Kepler's first law of planetary motion states that the path of each planet around the Sun is an 

ellipse with the Sun at one focus. This is illustrated by the picture in the section above. Kepler also found that 

the planets do not move around the Sun at a uniform speed, but move faster when they are closer to the Sun and 

slower when they are farther away. Kepler's second law states that the line from the Sun to any planet sweeps 

out equal areas of space in equal time intervals. This is shown in the picture below. 
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After ten years of work, Kepler discovered the relationship between the time it takes a planet to orbit the Sun 

and its distance from the Sun. Kepler's third law says that the square of the orbital period of a planet is directly 

proportional to the cube of the average distance of the planet from the Sun. Mathematically, this is given by the 

ratio T^2/r^3 and applies to all planets. The practical application of Kepler's third law is to calculate the radius 

of a planet's orbit by observation of that planet's orbital period. 
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