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ABSTRACT 

In this paper we investigate the existence of some graph  labelings in Twig(𝑃𝑚⨀𝐾1), 𝑚 ≥ 2 .  
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1. INTRODUCTION 

The concept of graph labeling was introduced by Rosa in 1967 [7]. In 2019 Esakkiammal et.al., introduced the 

concept of Proper d-lucky labeling [5], Proper Lucky labeling was introduced by Kins Yenoke et.al.,(2016)  [1], 

In 2004 Sundaram et.al., introduced the concept of Product Cordial Labeling (2022) [9], Tribonacci cordial 

labeling[ was introduced by  Sarbari Mitra et.al., 2022 [8],In 2024 Bala et.al., introduced the concept of Tribonacci 

Product cordial labeling[2]. Gaussian anti magic labeling was introduced by Thirusangu  et.al., (2019) [10]. 

Motivated by the above work, in this paper we have investigate and the existence of d-lucky Labeling, Luck 

Labeling, Tribonacci Product cordial labeling for Twig(𝑃𝑚⨀𝐾1), 𝑚 ≥ 2. 

 

2. PRELIMINARIES 

In this section, we provide some basic definitions relevant to this paper. 

Definition 2.1: Let h be a function from 𝑅 (G) to {0,1}. For each edge 𝑟𝑖𝑟𝑗 , assign the label h(𝑟𝑖)h(𝑟𝑗). H is called 

product cordial labeling if |𝑟ℎ(0) − 𝑟ℎ(1)| ≤ 1 and |𝑏ℎ ∗(0) − 𝑏ℎ ∗(1)| ≤ 1 where 𝑟ℎ(𝑖) and 𝑏ℎ ∗(𝑖) denote the 

number of vertices and edges respectively label in with ‘0’ and ‘1’ .A graph with a product cordial abeling is 

called a product cordial graph.   

Definition 2.2: A d-lucky labeling is called proper if 𝑙(𝑢) ≠ 𝑙(𝑟) for every adjacent vertices 𝑢 and 𝑟. The proper 

d-lucky number of a graph is the least positive integ 𝑘 such that 𝐺 has a Proper d-lucky labeling with {1,2, … . , 𝑘} 

as the set of labels and is denoted by 𝜂
𝑝𝑑𝑙

(𝐺). 

Definition 2.3: A Lucky Labeling is Proper lucky abeling if the labeling 𝑙 is proper as well as lucky, that is if 

𝑢 and 𝑟 are adjacent in 𝐺 then  ℎ(𝑢) ≠ ℎ(𝑟) and if 𝑠(𝑢) ≠ 𝑠(𝑟). The Proper Lucky labeling with {1,2, … . , 𝑘} the 

set of labels. 

Definition 2.4:The sequence {𝑇𝑚}𝑚=1
∞  of Tribonacci numbers is defined by the third order linear recurrence 

relation (for m > 0): 

𝑇𝑚+3 = 𝑇𝑚 + 𝑇𝑚+1 + 𝑇𝑚+2 ;  𝑇0 = 0, 𝑇1 = 𝑇2 = 1 

                                  {𝑇𝑚}  = [1,1,2,4,7 13,24, . . ] 

Definition 2.5: An injective function 𝛿 ∶ 𝑅(𝐺) → {𝑇0, 𝑇1, … 𝑇𝑚} is said to be Tribonacci cordial labeling if the 

induced function 𝛿∗
: B(G)→ {0,1} defined by 𝛿∗

(𝑟𝑖𝑟𝑗) = (𝛿(𝑟𝑖) + 𝛿(𝑟𝑗))(𝑚𝑜𝑑2)  satisfies the condition  

|𝑏𝛿 ∗(0) − 𝑏𝛿 ∗(1)| ≤ 1. A graph which admits Tribonaci cordial labeling is called Tribonacci cordial graph. 

Definition 2.6:An injective function 𝛿 ∶ 𝑅(𝐺) → {𝑇1, 𝑇2, … 𝑇𝑚} is said to be Tribonacci product cordial labeling 

if the induced function 𝛿∗
: B(G)→ {0,1} defined by 𝛿∗

(𝑟𝑖𝑟𝑗) = (𝛿(𝑟𝑖)𝛿(𝑟𝑗))(𝑚𝑜𝑑2)  satisfies the condition 
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| 𝑏𝛿 ∗(0) − 𝑏𝛿 ∗(1)| ≤ 1. A graph which admits Tribonacci Product cordial labeling is called Tribonacci product  

cordial graph. 

Definition 2.7: Gaussian antimagic labeling in a G(R,B) graph is a function ℎ: 𝑅(𝐺) → {𝑐 + 𝑖𝑑 / 𝑐, 𝑑 ∈   𝑁  } 1 ≤

𝑐 ≤ 𝑑 ≤ 𝑏 such that the induced function  ℎ ∗ ∶ 𝐵(𝐺) → 𝑁 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   ℎ ∗(𝑟𝑢) =  |ℎ(𝑟)|2 + |ℎ(𝑢)|2 results all 

the edge labels are distinct.A graph which admits Gaussian antimagic labeling is called Gaussian antimagic graph. 

Definition 2.8: Let 𝑃𝑚 be a path graph with m vertices. The comb graph is defined as 𝑃𝑚⨀𝐾1. It has 2m vertices 

and 2m-1 edges. 

Note: A comb is  a caterpillar in which each vertex in the path is with 𝐾1.  

Definition 2.9: A graph obtained from a path by attaching exactly two pendent edges to each internal vertex of 

the path is called a twig and is denoted by (𝑇𝑤𝑖𝑔)𝑚, 𝑚 ≥ 1. 

 

3. MAIN RESULT 

In this section, we discuss about the structure of the Twig(𝑃𝑚⨀𝐾1) graph for Proper d-lucky labeling, 

Proper Lucky labeling, Tribonacci Product cordial labeling and Gaussian antimagic labeling. 

Structure of Twig(𝑃𝑚⨀𝐾1)  : 

Twig(𝑃𝑚⨀𝐾1), 𝑚 ≥ 2 is a graph obtained by attaching exactly two pendent edges to each internal vertex 

of the external path of comb graph. The vertex set and edge set are defined as follows 𝑅(𝐺) =  {𝑟1, 𝑟2, 𝑟3, . . , 𝑟4𝑚} 

and 𝐵(𝐺) =  {{𝑟𝑖𝑟𝑖+1/1 ≤ 𝑖 ≤ 𝑚 − 1} ∪ {{𝑟𝑖𝑟𝑚+𝑖} ∪ {𝑟𝑖𝑟2𝑚+(2𝑖−1)} ∪ {𝑟𝑖𝑟2𝑚+2𝑖}/1 ≤ 𝑖 ≤ 𝑚}}. 

 Clearly, Twig(𝑃𝑚⨀𝐾1), 𝑚 ≥ 2 has 4𝑚 vertices and 4𝑚 − 1 edges. The graph thus obtained   is a particular case 

of a uniform caterpillar. 

 
THEOREM 3.1: 

Twig(𝑃𝑚⨀𝐾1), 𝑚 ≥ 2 admits Proper lucky labeling with  𝜂
𝑑𝑙

(𝑇𝑤𝑖𝑔(𝑃𝑚⨀𝐾1)) = 2. 

Proof: 

 From the structure of  Twig(𝑃𝑚⨀𝐾1) . It is clear that Twig(𝑃𝑚⨀𝐾1) has 4𝑚 vertices and  4𝑚 − 1 edges. 

    To prove  Twig(𝑃𝑚⨀𝐾1), is lucky, define the function 𝑙: 𝑅(𝐺) → 𝑁  to label the vertices as follows: 

Case(i): 𝑚 = 1(𝑚𝑜𝑑2) 

(i) 𝑙(𝑟1) = 𝑙(𝑟𝑚) = 1, 

(ii) 2 ≤ 𝑖 ≤ 𝑚 − 1, m≥ 3, 𝑙(𝑟𝑖) = {2, 𝑖 ≡ 0(𝑚𝑜𝑑2) 1,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 
(iii) 1 ≤ 𝑖 ≤ 𝑚, 𝑙(𝑟𝑖+𝑚) = {1, 𝑖 ≡ 0(𝑚𝑜𝑑2) 2,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 

𝑙(𝑟2𝑚+(2𝑖−1)) = {1, 𝑖 ≡ 0(𝑚𝑜𝑑2) 2,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,   𝑙(𝑟2𝑚+2𝑖) = {1, 𝑖 ≡

0(𝑚𝑜𝑑2) 2,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . 
Case(ii): 𝑚 = 0(𝑚𝑜𝑑2) 

(i) 𝑙(𝑟1) = 1, 𝑙(𝑟𝑚) = 2, 

(ii) 2 ≤ 𝑖 ≤ 𝑚 − 1, 𝑚 ≥ 3, 𝑙(𝑟𝑖) = {2, 𝑖 ≡ 0(𝑚𝑜𝑑2) 1,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 
(iii) 1 ≤ 𝑖 ≤ 𝑚, 𝑙(𝑟𝑖+𝑚) = {1, 𝑖 ≡ 0(𝑚𝑜𝑑2) 2,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 

https://www.ijetrm.com/
http://ijetrm.com/


 

Volume-09 Issue 02, February-2025                                                                                         ISSN: 2456-9348 

                                                                                                                                                   Impact Factor: 8.232 

 

 
International Journal of Engineering Technology Research & Management 

Published By: 

https://www.ijetrm.com/ 

 

IJETRM (http://ijetrm.com/)   [21] 

  

 

 

             𝑙(𝑟2𝑚+(2𝑖−1)) = {1, 𝑖 ≡ 𝑚𝑜𝑑2 2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,   𝑙(𝑟2𝑚+2𝑖) = {1, 𝑖 ≡ 𝑚𝑜𝑑2 2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . 

Case(i): Therefore, 

(i) 𝑠(𝑟1) =  𝑠(𝑟𝑛) = 8, 

(ii) 2 ≤ 𝑖 ≤ 𝑚 − 1,𝑚 ≥ 3, 𝑠(𝑟𝑖) = {5, 𝑖 ≡ 0(𝑚𝑜𝑑2) 10,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 

(iii) 1 ≤ 𝑖 ≤ 𝑚, 𝑠(𝑟𝑖+𝑚) = 𝑠(𝑟2𝑚+(2𝑖−1)) = 𝑠(𝑟2𝑚+2𝑖) = {2, 𝑖 ≡ 𝑚𝑜𝑑2 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 

Case(ii): Therefore, 

(i) 𝑠(𝑟1) = 8, 𝑠(𝑟𝑛) = 4, 

(ii) 2 ≤ 𝑖 ≤ 𝑚 − 1,𝑚 ≥ 3, 𝑠(𝑟𝑖) = {5, 𝑖 ≡ 0(𝑚𝑜𝑑2) 10,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 

(iii) 1 ≤ 𝑖 ≤ 𝑚, 𝑠(𝑟𝑖+𝑚) = 𝑠(𝑟2𝑚+(2𝑖−1)) = 𝑠(𝑟2𝑚+2𝑖) = {2, 𝑖 ≡ 0(𝑚𝑜𝑑2) 1,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . 

Clearly, s(𝑟𝑖) ≠ s(𝑟𝑖+𝑚), s(𝑟𝑖) ≠ 𝑠(𝑟2𝑚+(2𝑖−1)), 𝑠(𝑟𝑖) ≠ 𝑠(𝑟2𝑚+2𝑖), for any two adjacent vertices of 

Twig(𝑃𝑚⨀𝐾1) . Therefore  Twig(𝑃𝑚⨀𝐾1), 𝑚 ≥ 2   admits Proper lucky labeling with 𝜂
𝑑𝑙

(𝑇𝑤𝑖𝑔(𝑃𝑚⨀𝐾1)) = 2. 

EXAMPLE 3.1: 

Proper Lucky labeling for Twig(𝑃𝑚⨀𝐾1) 𝑓𝑜𝑟 𝑚 = 4 𝑎𝑛𝑑 𝑚 = 5  is shown in the figure 3.1.1 and 3.1.2 

respectively. 

 
Figure 3.1.1 

 
Figure 3.1.2 

THEOREM 3.2: 

Twig(𝑃𝑚⨀𝐾1), 𝑚 ≥ 2 admits Proper d-lucky labeling with  𝜂
𝑑𝑙

(𝑇𝑤𝑖𝑔(𝑃𝑚⨀𝐾1)) = 2. 

Proof: 

 From the structure   of  Twig(𝑃𝑚⨀𝐾1), 𝑚 ≥ 2 . It is clear that Twig(𝑃𝑚⨀𝐾1), 𝑚 ≥ 2 has   4𝑚   vertices   

and  4𝑚 − 1 edges. 

    To prove  Twig(𝑃𝑚⨀𝐾1), 𝑚 ≥ 2   is Proper d-lucky, define the function 𝑙: 𝑅(𝐺) → 𝑁  to label the 

vertices as follows: 
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Case(i):𝑚 = 1(𝑚𝑜𝑑2) 

(i) 𝑙(𝑟1) = 𝑙(𝑟𝑚) = 1, 

(ii) 2 ≤ 𝑖 ≤ 𝑚 − 1, m≥ 3, 𝑙(𝑟𝑖) = {2, 𝑖 ≡ 0(𝑚𝑜𝑑2) 1,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 
(iii) 1 ≤ 𝑖 ≤ 𝑚, 𝑙(𝑟𝑖+𝑚) = {1,   0(𝑚𝑜𝑑2) 2, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 

𝑙(𝑟2𝑚+(2𝑖−1)) = {1, 𝑖 ≡ 0(𝑚𝑜𝑑2) 2,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,   𝑙(𝑟2𝑚+2𝑖) = {1, 𝑖 ≡

0(𝑚𝑜𝑑2) 2,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . 
Case(ii): 𝑚 = 0(𝑚𝑜𝑑2) 

(i) 𝑙(𝑟1) = 1, 𝑙(𝑟𝑚) = 2, 

(ii) 2 ≤ 𝑖 ≤ 𝑚 − 1, 𝑚 ≥ 3, 𝑙(𝑟𝑖) = {2, 𝑖 ≡ 0(𝑚𝑜𝑑2) 1,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 
(iii) 1 ≤ 𝑖 ≤ 𝑚, 𝑙(𝑟𝑖+𝑚) = {1, 𝑖 ≡ 0(𝑚𝑜𝑑2) 2,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 

             𝑙(𝑟2𝑚+(2𝑖−1)) = {1, 𝑖 ≡ 0(𝑚𝑜𝑑2) 2,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,   𝑙(𝑟2𝑚+2𝑖) = {1, 𝑖 ≡

0(𝑚𝑜𝑑2) 2,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . 
 

(i) 𝑑(𝑟1) = 𝑑(𝑟𝑚) = 4, 

(ii) For 2 ≤ 𝑖 ≤ 𝑚 − 1, 𝑑(𝑟𝑖) = 5, 

(iii) For 𝑚 + 1 ≤ 𝑖 ≤ 4𝑚, 𝑑(𝑟𝑖) = 1. 

Case(i): Therefore, 

(i) 𝑐(𝑟1) =  𝑐(𝑟𝑛) = 12, 

(ii) 2 ≤ 𝑖 ≤ 𝑚 − 1,𝑚 ≥ 3, 𝑐(𝑟𝑖) = {10, 𝑖 ≡ 0(𝑚𝑜𝑑2) 15,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 

(iii) 1 ≤ 𝑖 ≤ 𝑚, 𝑐(𝑟𝑖+𝑚) = 𝑐(𝑟2𝑚+(2𝑖−1)) = 𝑐(𝑟2𝑚+2𝑖) = {3, 𝑖 ≡ 0(𝑚𝑜𝑑2) 2,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 

Case(ii): Therefore, 

(i) 𝑐(𝑟1) = 12, 𝑐(𝑟𝑛) = 8, 

(ii) 2 ≤ 𝑖 ≤ 𝑚 − 1,𝑚 ≥ 3, 𝑐(𝑟𝑖) = {10, 𝑖 ≡ 0(𝑚𝑜𝑑2) 15,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 

(iii) 1 ≤ 𝑖 ≤ 𝑚, 𝑐(𝑟𝑖+𝑚) = 𝑐(𝑟2𝑚+(2𝑖−1)) = 𝑐(𝑟2𝑚+2𝑖) = {3, 𝑖 ≡ 0(𝑚𝑜𝑑2) 2,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . 

Clearly, c(𝑟𝑖) ≠ c(𝑟𝑖+𝑚), c(𝑟𝑖) ≠ 𝑐(𝑟2𝑚+(2𝑖−1)), 𝑐(𝑟𝑖) ≠ 𝑐(𝑟2𝑚+2𝑖), for any two adjacent vertices of  

Twig(𝑃𝑚⨀𝐾1).Therefore Twig(𝑃𝑚⨀𝐾1) admits Proper d-lucky labeling with 𝜂
𝑑𝑙

(𝑇𝑤𝑖𝑔(𝑃𝑚⨀𝐾1) ) = 2. 

EXAMPLE 3.2: 

Proper d-Lucky labeling for Twig(𝑃𝑚⨀𝐾1) for m = 4 and m = 5 is shown in the figure 3.2.1 and 3.2.2 

respectively. 

 

 
Figure 3.2.1 
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Figure 3.2.2 

 

THEOREM 3.3: 

Twig(𝑃𝑚⨀𝐾1), 𝑚 ≥ 2 admits Tribonacci Product Cordial labeling. 

Proof: 

 From the structure of  Twig(𝑃𝑚⨀𝐾1), 𝑚 ≥ 2 . It is clear that Twig(𝑃𝑚⨀𝐾1) has 4𝑚 vertices and  4𝑚 − 1 edges. 

Define the function  ℎ: 𝑅(𝐺) → {0,1} to obtain the vertex lables as follows: 

For 1 ≤ 𝑖 ≤ 𝑚 

(i) 𝑟𝑖 = { 𝑇4𝐼−2} 

(ii) 𝑟2𝑚+(2𝑖−1) = {𝑇4𝐼−3} 

(iii) 𝑟𝑖+𝑚 = { 𝑇4𝐼} 

(iv) 𝑟2𝑚+2𝑖 = {𝑇4𝐼−1} 

Clearly,  𝑅ℎ(0) = 2𝑚,  𝑅ℎ(1) = 2𝑚,                                                                                            

Therefore, |𝑅ℎ(0) − 𝑅ℎ(1)| = |2𝑚 − 2𝑚| = 0 ≤ 1         

Define the function  ℎ ∗ ∶ 𝐵(𝐺) → {0,1} to obtain the edge lables as follows: 

For 1 ≤ 𝑖 ≤ 𝑚 − 1 

(i)  𝑟𝑖𝑟𝑖+1 = 1 

For 1 ≤ 𝑖 ≤ 𝑚 

(i)  𝑟𝑖𝑟2𝑚+(2𝑖−1) = 1 

(ii) 𝑟𝑖𝑟𝑖+𝑚 = 𝑟𝑖𝑟2𝑚+2𝑖  = 0                 

Clearly,  𝐵ℎ ∗(0) = 2𝑚 − 1,  𝐵ℎ ∗(1) = 2𝑚,                                                                                            

Therefore, |𝐵ℎ ∗(0) − 𝐵ℎ ∗(1)| = |(2𝑚 − 1) − 2𝑚| = 1 ≤ 1      

Hence the conditions |𝑅ℎ(0) − 𝑅ℎ(1)| ≤ 1 and |𝐵ℎ ∗(0) − 𝐵ℎ ∗(1)|  ≤ 1 are satisfied. 

Therefore, Twig(𝑃𝑚⨀𝐾1), 𝑚 ≥ 2 admits Tribonacci Product cordial labeling. 

EXAMPLE 3.3: 

Tribonacci Product Cordial labeling for Twig(𝑃𝑚⨀𝐾1) m = 4 is shown in the figure 3.3.1 respectively. 
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Figure 3.3.1 

THEOREM 3.4: 

Twig(𝑃𝑚⨀𝐾1), 𝑚 ≥ 2  admits Gaussian Antimagic  labeling. 

Proof: 

  From the structure of  Twig(𝑃𝑚⨀𝐾1). It is clear that Twig(𝑃𝑚⨀𝐾1) has 4𝑚 vertices and  4𝑚 − 1 edges. 

Define the function  ℎ: 𝑅(𝐺) → {𝑎 + 𝑖𝑏 / 𝑎, 𝑏 ∈   𝑁  } to obtain the vertex lables as follows: 

For 1 ≤ 𝑗 ≤ 4𝑚 

             𝑟𝑗 = 1 + 𝑟𝑖 

Define the function  ℎ ∗ ∶ 𝐵(𝐺) → 𝑁 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   ℎ ∗(𝑟𝑢) =  |ℎ(𝑟)|2 + |ℎ(𝑢)|2to obtain the edge lables as 

follows: 

(i) ℎ ∗(𝑟𝑗𝑟𝑗+1) = 2𝑗2 + 2𝑗 + 3      :  1 ≤ 𝑗 ≤ 𝑚 − 1 

(ii) 1 ≤ 𝑗 ≤ 𝑚 

       ℎ ∗(𝑟𝑗𝑟𝑗+𝑚)             = 2𝑗2 + 𝑚2 + 2𝑚𝑗 + 2 

                                                 ℎ ∗(𝑟𝑗𝑟2𝑚+(2𝑗−1)) = 5𝑗2 + 4𝑚2 + 8𝑚𝑗 + 3 − 4𝑗 − 4𝑚 

                            ℎ ∗(𝑟𝑗𝑟2𝑚+(2𝑗)        = 5𝑗2 + 4𝑚2 + 8𝑚𝑗 + 2 

Hence in which all the elements are distinct. 

Therefore, Twig(𝑃𝑚⨀𝐾1), 𝑚 ≥ 2 admits Gaussian Antimagic labeling. 

EXAMPLE 3.4: 

Gaussian Antimagic labeling for  Twig(𝑃𝑚⨀𝐾1), 𝑚 = 4 is shown in the figure 3.4.1 respectively. 

 

 
Figure 3.4.1 

CONCLUSION: 
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In this paper, we have proved the existence of Proper Lucky Labeling, Proper d-lucky Labeling, Tribonacci 

Product Cordial Labeling and  Gaussain Anti-magic labeling for Twig(𝑃𝑚⨀𝐾1), 𝑚 ≥ 2. 
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