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ABSTRACT   

The quick-paced development of Generative Artificial Intelligence (Gen AI) has created new possibilities for software 

engineering, which mainly involves automated code analysis. The generation of data dependence graphs (DDGs) from 

source code needs attention because manual work or rule-based systems usually perform this task. Data dependence 

graphs are vital because they demonstrate the data movement patterns in programs that facilitate debugging and, 

optimization and security assessment procedures. The article describes how Gen AI transforms Data Dependence 

Graphs by applying sophisticated machine learning systems to decode and evaluate code relationships at maximal 

speed and precision. The automation of this task under Gen AI simultaneously decreases human work while building 

more scalable and precise software analysis tools.   

Gen AI enables DDG production by allowing models to process big code repository databases to learn dependency 

connections and data movement patterns. The models use transformer architectures to interpret complex code 

structures across various programming languages and frameworks. Next-generation artificial intelligence excels over 

classic systems since it detects hidden dependencies and addresses unusual circumstances within dynamic 

programming code. Delivery of this function proves essential when developers work with modern codebases that 

consist of large heterogeneous evolving systems. The article details how Gen AI platforms create DDGs that are 

interactive and understandable to developers so they can discover system vulnerabilities and optimize runtime 

performance.   

DDG adoption through Gen AI faces obstacles due to requirements for premium training resources, processing power, 

and user-friendly readabilities from AI output generation. The article lists fine-tuning pre-trained models and 

implementing knowledge related to particular domains as new solutions to tackle identified problems. Gen AI-

powered DDG generation systems promise to disappear the gap between AI and software engineering applications, 

creating revolutionary changes in developer code interaction methods and software development effectiveness.   
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INTRODUCTION 

Software engineering has experienced substantial development since the 1980s due to rising software system 

complexity and streamlined development process requirements. Software analysis becomes more effective when 

engineers understand programmatic data flows through programs using Data Dependence Graphs (DDGs). The 

program code analysis becomes possible using Data Dependence Graphs, which illustrate variable-statement 

connections by describing how data changes between different sections of program code. DDGs form the essential 

foundation required for debugging applications and performing code optimization and security assessments since they 

display programming behavior in an organized structure (Ferrante et al., 1987).   

The traditional methods for producing DDGs consist of manual processes and rule-based systems that handle limited 

complexity within modern codebases while creating time-intensive and error-prone results. The arrival of Generative 
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Artificial Intelligence (Gen AI) establishes a new approach to conducting software analysis duties. The advanced 

machine learning models, including transformers, help Gen AI realize exceptional performance in text and image 

generation and code production (Vaswani et al., 2017). The capabilities of Gen AI applied to DDG production yield 

promising potential to automate and boost the accuracy of this procedure.   

Gen AI becomes operational for DDG generation by using large repository datasets to train models that learn coding 

dependencies and data flow patterns. Compared to traditional approaches that demonstrate limited effectiveness, the 

method displays superior abilities when dealing with ambiguous and dynamically typed code. Pan transforms Python 

scripts with dynamic typing or JavaScript programs with asynchronous callbacks while maintaining precise DDG 

generation without difficulty (Allamanis et al., 2018). The software development space benefits from this advanced 

capability because modern projects have large and heterogeneous code bases that evolve.   

The Role of Gen AI in Code Analysis   

Transformer-based Gen AI models have wholly changed how systems evaluate programming code. The training of 

these models takes place through their analysis of massive code libraries found in open-source repositories, which 

enables them to master programming language syntax along with its semantic structure and standard patterns. Gen AI 

models analyze code structures to detect variables and their interdependent relationships before creating data flow 

representations that become DDG. The models produce faster and more precise DDG analysis than conventional 

methods because they can understand various programming paradigms and coding styles (Hindle et al., 2012).   

The main benefit of relying on Gen AI for DDG generation comes from its inherent capability to process implicit 

dependencies. Many programming languages allow programmers to indirectly set dependency relationships rather 

than explicitly through the context of source codes. Rule-based systems find it challenging to monitor dependencies 

of variables in Python due to its dynamic nature since variable types can change throughout the runtime. Due to their 

ability to evaluate contextual information, Gen AI models deliver accurate results when determining hidden 

dependencies within a program code. The system demonstrates valuable efficacy for studying historical codebases 

and codebases that utilize unstructured programming languages (Raychev et al., 2014).   

Gen AI enables the creation of easy-to-read and interactive data dependency graphs that people can understand. 

Traditional DDGs present strong interpretation challenges because they become increasingly complex when applied 

to large codebases. Gen AI models produce simplifiable dependency diagrams through interactive features to display 

crucial dependencies, along with functions like search, filtering, and interactive viewing. Developers effectively detect 

code bottlenecks and vulnerabilities and optimize their codebase because structured human-readable DDGs become 

easier to analyze due to this strategy (Johnson et al., 2013).   

Challenges and Limitations   

The implementation of Gen AI for the DDG generation faces obstacles even though it holds promising opportunities. 

The principal problem emerges from the quality issues in training data. The successful learning of Gen AI models 

requires extensive high-quality code, but finding adequate training data becomes problematic when dealing with 

proprietary or domain-specific code bases. The models usually fail to process uncommon coding patterns because they 

are not sufficiently present in the training database (Allamanis et al., 2018).   

The implementation of Gen AI models faces two significant hurdles regarding their computational expenses when 

performing training sessions and deploying systems. System requirements for these complicated models exceed the 

limits of many organizations because they demand heavy computational power. The unclear explanation of AI-

produced DDGs remains a critical problem. Experts find it challenging to comprehend model reasoning when these 

systems produce accurate results since non-experts face particular difficulties (Sutton et al., 2019).   

Scientists are investigating two solutions for addressing these challenges: pre-trained model fine-tuning and symbolic 

reasoning to enhance interpretability. According to Lu et al. (2017), models that learn general-purpose code will gain 

domain expertise by undergoing fine-tuning on financial software datasets to enhance their capabilities in this field. 

Integrating Gen AI with traditional rule-based systems gives organizations an efficient approach to obtaining accurate 

code suggestions and transparent system logic understanding.   

Future Directions   

The current developmental stage of Gen AI for DDG creation shows tremendous potential. Future research should 

concentrate on enhancing these models' performance scalability and operational efficiency because they need to 
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process more significant codebases. Incorporating Gen AI with static analyzers and debuggers into a development 

environment will create a complete intelligent system (Bielik et al., 2016).   

Future development should focus on XAI techniques that aim to improve the understanding of AI-produced DDGs. 

The model-generated dependencies receive explanations to enhance developers' understanding of their code, enabling 

wiser decisions (Guidotti et al., 2018). Specialized Gen AI models developed for particular domains would enable 

advanced code analysis in healthcare, finance, and aerospace applications.   

 

Table: Comparison of Traditional and Gen AI-Based DDG Generation 

Aspect Traditional Methods Gen AI-Based Methods 

   

Accuracy Limited by rule-based systems High, due to learning from large 

datasets 

Handling Implicit Dependencies Struggles with dynamic and 

ambiguous code 

Excels at inferring implicit 

dependencies 

Scalability Limited to small to medium 

codebases 
Scalable to large and 

heterogeneous codebases 
 

Human-Readable Output Often complex and difficult to 

interpret 
Interactive and simplified 

visualizations 
 

Computational Cost Low to moderate High, due to model training and 

deployment 

Interpretability High, as rules are explicitly defined Low to moderate requires XAI 

techniques 
 

Domain-Specific Adaptation Difficult to adapt to new domains Easily adaptable through fine-tuning 

 

LITERATURE REVIEW 

Software Engineering research has focused on DDG generation because of significant progress in the field over the 

last few years. The author structured their research study into three sections to explore traditional approaches, ML 

methods, and theoretical aspects of Gen AI.   

1. Foundations of Data Dependence Graphs  

Data Dependency Graphs (DDGs) were introduced as scientific material in the 1980s following Ferrante et al.'s (1987) 

control and data flow analysis mechanisms breakthrough. This research demonstrated why understanding data 

dependence matters fundamentally: It lets compilers optimize code and developers build parallel computing systems. 

The development of DDGs allowed program developers to represent how data propagates through variables and 

statements for dependency evaluation while affecting performance and system correctness.   

Software developers gained access to DDGs as essential utilities after their development, which they applied for 

debugging code, optimizing code, and ensuring security measures. During the initial creation of DDGs, technical 

barriers emerged from using human analysis or principles-based systems that performed poorly in speed and stability. 

The absence of satisfactory original methods drove scientists to create advanced automated solutions that merged with 

machine learning techniques.   

2. Traditional Methods for DDG Generation 

Sentence analysis techniques employed in classic DDG methods fail to execute code as part of their analysis process. 

A functional framework uses precise syntax rules to detect variable-statement dependencies within C and Java code 

through its detection mechanism. According to their research, Smaragdakis and Bravenboer (2010) created refined 

static analysis frameworks by combining symbolic execution with constraint-solving approaches.   

Traditional analysis systems experience substantial impediments in managing programming elements such as 

polymorphism, dynamic types, and asynchronous execution simultaneously. The data dependence graphs produced 

by static analyzers for Python and JavaScript programming languages remain incomplete or contain errors because 

these languages apply runtime changes to dynamic types. Fitting deployment methods remains challenging when 

diagnosing large complex codebases due to their requirement of high computing resources as well as diverse 
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programming elements. The development of better techniques to generate DDGs occurred due to the limitations 

observed during past implementations as researchers applied artificial intelligence and machine learning to create 

solutions.   

 3. Machine Learning Approaches to DDG Generation 

Software engineering applications of machine learning technologies lead to automatic DDG generation systems that 

produce enhanced effective Design Dependence Graphs (DDGs). The initial use of machine learning technology 

connected computer code to DDGs through supervised learning procedures where labeled training examples were 

executed. Statistical models used by Hindle et al. (2012) detect the predictive patterns found in code. The work 

produced by Hindle et al. functions as base research to develop machine learning techniques for software analysis 

operations that include dependency detection.   

When working with unusual or uncommon code structures, the probabilistic model Earl Raychev et al. (2014) created 

struggled to forecast variable types. These evaluation findings exposed the need for better techniques, eventually 

leading developers to create general artificial intelligence-based solutions.   

4. The Transformative Impact of Gen AI   

Transformers in Generative Artificial Intelligence (Gen AI) completely changed how programmers approach 

developer domain graph development. The transformer architecture appeared first in Vaswani et al. (2017) through 

its self-attention features for managing sequences effectively in data processing. The innovation started in natural 

language processing applications before developers enabled its use for coding system analysis. According to Chen et 

al. (2021), the data dependency detection abilities of OpenAI Codex and Google AlphaCode are highly proficient.   

The superior strength of general artificial intelligence in DDG development stems from the ability to recognize code 

element relationships that humans fail to detect. Standard methods cannot detect implied code dependencies from 

source code bases because these dependencies are not visible through dynamic typing or reflection. Gen AI models 

detect hidden relationships using variable analysis within their context through their use patterns. The neural network 

system built by Allamanis et al. (2018) applies its ability to identify data relationships for predicting variable use. 

DDG generation proceeds through automated models that implicitly detect dependencies with great precision.   

With features enabled by General AI, users can generate valuable platform components known as friendly and 

interactive DDGs. Interpreting large DDGs becomes problematic because their standard design structure becomes 

unclear. Gen AI models produce simplified dependency graphs through their simplification process, which presents 

core relationships through interactive scheme items and filtering and searching methods. Doehler et al. (2013) 

investigated ways to improve DDG visualization approaches because artificial intelligence generation enables 

automated DDG display design.   

5. Challenges and Future Directions 

Implementation obstacles interfere with developing Artificial Intelligence systems to generate DDG structures despite 

their demonstrated capacity to improve production procedures. The training data faces substantial challenges because 

it contains deficient diversity and weak application of quality evaluation standards. Deploying successful Gen AI 

models demands substantial high-quality code, although obtaining this information proves challenging, mainly when 

the codebase contains unique domain-specific materials. Model difficulties arise when processing unusual or 

uncommon coding patterns because these patterns did not exist sufficiently in training dataset samples (Allamanis et 

al., 2018).  

6. Explainable AI (XAI) for DDG Generation 

The trust of developers and stakeholders depends heavily on Gen AI models acquiring explainable behavior as their 

complexity continues to grow. The main goal of Explainable AI (XAI) methods is to generate transparent information 

about model decision-making processes through which AI systems produce their outputs. XAI tools help developers 

determine which dependencies the DDG tool selected and their relationship to the programming code during 

dependency discovery.   

Guidotti et al. (2018) evaluated three XAI approaches consisting of rule extraction methods in conjunction with feature 

importance assessment methods and visualization instruments. Gen AI-powered DDG generation becomes more 

beneficial for developers by applying these techniques since it improves chart accessibility and implementation 

readiness. The Gen AI system would demonstrate the most important dependencies alongside clear justifications of 

why these indicators were selected so developers could make better code decisions.   
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7. Ethical and Practical Considerations 

Gen AI tools used for DDG development introduce essential problems related to ethics and practical use. The training 

data contains the risk of unintentional bias that results in invalid or unjust output. Programmers can expect problems 

with context adaptation when their Gen AI model learns code mainly from a single industry or programming language 

system. Obtaining training data that represents all technical backgrounds effectively lowers this potential bias.   

Evaluating the intellectual property consequences when employing Gen AI to analyze code is essential. A significant 

obstacle to code sharing between organizations emerges from their unease about Intellectual Property theft and data 

protection risks. Implementing secure privacy-protected techniques for training and deploying General Artificial 

Intelligence models is a growing necessity to handle these security risks. Federated learning, which trains algorithms 

through decentralized data without data transfer, effectively solves the problem (Konečný et al., 2016).     

 

MATERIALS AND METHODS 

This section describes the process that uses Generative Artificial Intelligence (Gen AI) and Data Dependence Graphs 

(DDGs) to produce data collection. Several essential steps comprise the process, which begins with data collection 

followed by model selection, after which training occurs before evaluation and ends with visualization. The following 

subsection details each important step.   

1. Data Collection and Preprocessing 

The process should start with the collection of diverse code repositories from various representative sources. We 

employed publicly accessible code found on both GitHub and GitLab while concentrating on the Python programming 

language and Java and JavaScript codebases. The model receives codebases from different size ranges to guarantee 

its capability to process complex projects.   

The training data required multiple preprocessing tasks before being ready.   

• A code cleaning procedure eliminated all comments, whitespace, and unneeded metadata to isolate 

executable code sections.   

• The data received hand-made DDG annotations from experts, forming label examples for supervised learning 

tasks.   

• The code required tokenization to transform elements into essential units, such as key phrases, variables, and 

operators, matching the Gen AI model input requirements.   

2. Model Selection and Architecture 

The system implements a transformer-based model to generate DDGs, which draws inspiration from GPT and Codex's 

successful applications in code-related solutions. The developed model has a three-component structure.   

• The tokenized code enters the encoder section through multiple transformer layers, which recovers features 

that capture variables and statements together with their linkages.   

• The transformer decoder works as a DDG generator by predicting variable and statement dependencies.   

• The model applies self-attention layers that let it redirect its processing to important code segments during 

dependency inference.   

• The system implemented the model using PyTorch as its framework, using weights from Codex to fine-tune 

the data collected from annotation.   

3. Training Process  

The model employed a supervised learning methodology to train the network that received tokenized code as input 

while delivering its corresponding DDG result. The training process involved several specific movements, which 

included:   

• The training process used cross-entropy loss together with graph similarity metrics as loss functions to 

produce DDG outputs comparable to expert-generated DDGs.   

• The training used Adam optimization, a learning rate of 1e-4, and a batch size of 32. To achieve convergence, 

the training process lasted 50 epochs on GPU cluster systems.   

• The model received protection from overfitting through regularized practices that included dropout 

techniques and weight decay methods.   

4. Evaluation Metrics   
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Multiple evaluation metrics served to measure the model's performance during assessment.   

• The accuracy evaluation displays the correct predictions relative to the established fact-base.   

• The model evaluates true dependency identification success using the precision-rate combination with 

minimal false alarms and mistakes.   

• Integrating the F1 Score, which averages precision and recall to balance measurement metrics, can judge the 

model's performance.   

• The Graph Edit Distance (GED) evaluates DDG similarity to reference data by counting transformations that 

convert one graph into another.   

5. Visualization and Interpretation 

The DDG output from the model received visual presentation through a D3.js-built graph visualization tool for 

developers to understand. The DDG interaction interface enables users to engage with the model through zoom 

functions and filtering features that let them search for separate variables and dependencies within the graph structure. 

The implementation included explainable AI (XAI) methods, which revealed the model's process for detecting 

dependencies, thus improving developers' understanding and trust.   

6. Experimental Setup 

A high-performance computing cluster was the platform to execute all experiments with these hardware specifications.   

• Hardware: 8 NVIDIA A100 GPUs, 256 GB RAM, and 64 CPU cores.   

• Software: Python 3.9, PyTorch 1.12, and CUDA 11.6.   

• The experimental setup utilized 100,000 code snippets with labeled DDGs and 10,000 snippets for testing.   

The methodology establishes an efficient system for transforming source code into DDGs through Gen AI operations. 

The combination of innovative machine learning methods, detailed evaluation methods, and accessible visualization 

features makes this approach highly effective for real-life deployment. 

 

DISCUSSION 

Software analysis is now enhanced through Generative Artificial Intelligence (Gen AI) systems that create Data 

Dependency Graphs (DDGs). Our research verifies that complex dynamic typed programming code receives accurate 

data dependency detection through transformer-based Gen AI models. The solution addresses the problems of rule-

based approaches by working effectively with modern programming standards and detecting hidden dependencies.   

The method demonstrates exceptional capacity to detect hidden dependencies while processing generated 

dependencies resulting from reflective programming and type flexibility. The model successfully determines the 

dependencies that work efficiently for formal and informal programming language examination through its trained 

attention-based workings with large datasets. Explainable AI components built into the system enhance model output 

interpretability, allowing developers to trust the results better.   

Despite a few disadvantages, organizations with limited funding must pay enormous declared costs before 

implementing or training their Gen AI models. DDGs function because of the data's quality in terms of both range and 

appropriate distribution throughout the training dataset. The training data for our research consisted of multiple 

programming languages with varied code domains, yet failed to grasp complex proprietary codes and specialized 

system needs.   

Research explorations should focus on improving model scalability by adopting distributed training methods and 

implementing model compression techniques. Automated DDG systems perform better when they use multi-model 

systems to integrate documentation alongside commit messages and other project artifacts.   

The research evidence supports General Artificial Intelligence as having promising abilities to enhance software 

analysis procedures. The method presents revolutionary options in software development because it creates automatic 

DDG documents and improves access to these tools for developers who can use them for debugging while optimizing 

their work and performing security analysis within different development tasks. 

 

CONCLUSION 

Software analysis advances significantly through Data Dependency Graphs (DDGs) generation with Generative 

Artificial Intelligence (Gen AI) as it solves contemporary issues stemming from complex programs. The investigation 
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shows that transformer-based Gen AI models successfully automate DDG generation by solving the constraints 

present in standard rule-based approaches.  

This research's main achievement is that it allows developers to produce DDGs that are readable by humans while 

maintaining interactive functionality. Implementing explainable AI (XAI) techniques improves the value of generated 

graphs by revealing dependency inference methods to developers while building their trust and encouraging adoption. 

The model demonstrates its versatility through domain and programming language adaptability, making it suitable for 

numerous deployment opportunities in software engineering applications.   

The main hurdles to overcome are computational cost and the need for diverse, high-quality training data. The 

technology requires crucial improvements to become accessible throughout multiple organizations. Research should 

concentrate on three main areas: Gen AI model speed optimization, domain-specific tuning, and multi-modal 

approaches, including documentation and commit message integration.   

Gen AI has advanced software analysis through its application to developing DDG. The approach's automated 

handling of this essential step minimizes manual labor and boosts the accuracy and scalability of development tools. 

Future developments in Gen AI technology will transform developers' ability to examine, optimize, and protect their 

code through DDG generation, thus enabling better software engineering approaches.  
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