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ABSTRACT 

The rise of electric vehicles (EVs) has intensified the demand for efficient and reliable battery management 

systems (BMS) that ensure optimal performance, safety, and longevity. A crucial component of BMS is battery 

module balancing, which addresses the inherent disparities in cell voltage and capacity within battery packs. These 

imbalances, if left uncorrected, can lead to overcharging, undercharging, thermal instability, and ultimately 

premature degradation of the battery system—factors that directly impact commercial EV performance and 

lifecycle costs. This paper presents a comprehensive examination of battery balancing strategies employed in 

commercial electric vehicles, exploring both passive and active balancing techniques. Passive balancing, while 

cost-effective and simple, dissipates excess energy as heat and is less efficient for large-scale modules. In contrast, 

active balancing methods—such as capacitor-based, inductor-based, and charge shuttling—redistribute energy 

between cells and enhance overall energy efficiency, albeit with increased complexity and cost. The discussion 

further delves into real-time monitoring algorithms, thermal management integration, and the role of AI in 

predictive balancing. By analyzing case studies from commercial fleets and experimental EV platforms, the paper 

identifies key parameters influencing balancing effectiveness, including cell chemistry, depth of discharge cycles, 

operational temperature, and load distribution patterns. Ultimately, the study highlights that strategic selection and 

implementation of balancing techniques not only improve power delivery and range consistency but also extend 

battery lifespan, reduce maintenance frequency, and enhance vehicle reliability. These findings underscore the 

critical importance of intelligent, scalable balancing architectures in meeting the growing energy demands of 

modern commercial EV applications. 
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1. INTRODUCTION 

1.1 Contextualizing Battery Management in Commercial EVs  

The rapid electrification of transportation has catalyzed significant growth in the commercial electric vehicle (EV) 

sector, where reliability, operational efficiency, and lifecycle cost optimization are key performance indicators. At 

the core of every electric vehicle lies its battery system—an intricate assembly of cells, modules, and packs that 

not only store energy but also dictate the vehicle’s range, power delivery, and longevity [1]. In commercial 

applications such as delivery fleets, ride-hailing vehicles, and public transport systems, battery performance 

directly influences operational uptime and cost-effectiveness. 

Managing this performance is the responsibility of the battery management system (BMS), a critical onboard 

technology that monitors, controls, and safeguards battery operation under varying environmental and usage 

conditions. The BMS is responsible for thermal regulation, charge/discharge control, state-of-charge (SOC) 

estimation, and more crucially, module balancing [2]. Balancing ensures that all battery cells operate within 

acceptable voltage and capacity ranges, preventing premature degradation and enhancing system reliability. 

In commercial EVs, the stakes are even higher. These vehicles often operate under extended duty cycles, high 

load conditions, and frequent fast charging—all of which accelerate cell imbalance and compound degradation 

risks [3]. The consequence of poorly managed batteries includes decreased range, erratic performance, frequent 

maintenance, and in extreme cases, catastrophic failure. 

Therefore, optimizing battery management through intelligent balancing strategies is not merely a technical 

concern—it is a foundational necessity for scaling commercial EV adoption sustainably. As battery costs still 
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constitute a significant portion of total vehicle cost, maximizing performance and lifespan becomes both an 

economic and environmental imperative [4]. 

1.2 Challenges of Module Imbalance and System Degradation  

Battery packs in commercial EVs are composed of multiple modules, each containing several cells connected in 

series and parallel configurations. Despite manufacturing precision, no two cells are truly identical in terms of 

capacity, internal resistance, or self-discharge rate. These inherent discrepancies, compounded by aging and usage 

conditions, lead to imbalance—where some cells reach full charge or depletion earlier than others during operation 

[5]. 

Over time, this imbalance becomes pronounced, with higher-capacity cells underutilized and weaker cells stressed 

beyond design limits. The result is an overall loss in usable pack capacity, as the BMS must limit the performance 

of all cells to match the weakest link in the system [6]. In commercial applications where range and reliability are 

non-negotiable, such compromises can significantly diminish fleet efficiency and ROI. 

Moreover, cell imbalance accelerates capacity fade and power fade, key indicators of battery degradation. 

Repeated overcharging of high-SOC cells and deep discharge of low-SOC ones generate localized heat, gas 

formation, and mechanical stress, exacerbating wear and safety risks [7]. Fast-charging cycles, which are 

increasingly common in commercial fleets to minimize downtime, further magnify these effects by pushing cells 

toward their thermal and electrochemical limits [8]. 

Another layer of complexity arises from uneven thermal distribution across the pack. Variations in cooling 

effectiveness can lead to thermal gradients that worsen imbalance and reduce the accuracy of SOC and state-of-

health (SOH) estimation by the BMS [9]. Left unaddressed, these disparities can result in erratic performance, 

false alarms, and costly battery replacements far earlier than the intended service life. 

1.3 Objectives, Scope, and Structure of the Paper  

This paper aims to explore and evaluate current and emerging battery module balancing strategies in 

commercial EVs, focusing on their impact on system performance, operational efficiency, and battery longevity. 

The central premise is that effective balancing not only mitigates degradation but also enhances total cost of 

ownership (TCO), making electric fleets more viable and competitive across industries [10]. 

The scope covers both passive and active balancing techniques, including resistor-based dissipation, capacitor 

and inductor-based energy redistribution, and advanced charge shuttling methods. Additionally, the paper 

investigates the integration of machine learning (ML) algorithms and real-time predictive analytics in modern 

battery management systems. These integrations are examined for their ability to adaptively balance cells based 

on operating conditions, usage profiles, and aging characteristics [11]. 

Structured into ten sections, the paper begins with a foundational overview of battery architecture and BMS roles, 

transitions into balancing techniques, and concludes with case studies, comparative evaluations, and future 

outlooks. Figures and tables are provided to visualize system models, technical comparisons, and performance 

data across different commercial EV contexts. 

By offering a detailed and application-driven examination of battery module balancing, this study contributes to 

the optimization of commercial EV technology in both design and real-world deployment scenarios [12]. 

 

2. FUNDAMENTALS OF BATTERY MODULES AND BALANCING 

2.1 Architecture of Lithium-Ion Battery Packs  

Lithium-ion battery packs used in commercial electric vehicles (EVs) are sophisticated systems designed to 

provide high energy density, long cycle life, and robust thermal and safety performance. A typical pack comprises 

multiple cells organized into modules, which are then grouped to form the complete battery pack. Each cell is the 

smallest electrochemical unit, and its capacity, voltage, and resistance contribute directly to the overall 

performance of the system [5]. 

Cells are connected in series to increase voltage and in parallel to increase current capacity. Modules typically 

contain 6 to 12 cells and are arranged in configurations such as 96S2P (96 series, 2 parallel) to meet the energy 

demands of commercial EVs. The full battery pack also incorporates mechanical support structures, thermal 

management systems, electrical isolation, and protective housing for safety and durability in varied operating 

conditions [6]. 

At the heart of this architecture is the Battery Management System (BMS), which monitors individual cell 

parameters and orchestrates thermal regulation, charging/discharging operations, and balancing. Integration with 
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vehicle communication networks (e.g., CAN bus) allows the BMS to interact with the vehicle control unit, charger, 

and drive system in real-time [7]. 

Design considerations also include cell chemistry (e.g., NMC, LFP), packaging format (pouch, cylindrical, 

prismatic), and spatial layout, all of which affect thermal distribution, accessibility for balancing, and 

susceptibility to degradation. The modular nature of the system facilitates serviceability, diagnostics, and the 

application of targeted balancing strategies. 

 

 
Figure 1: "Typical Layout of a Commercial EV Battery Pack and BMS Integration" 

 

2.2 Sources and Impact of Cell Imbalances  

Despite stringent manufacturing tolerances, every lithium-ion cell in a battery pack exhibits slight variations in 

capacity, internal resistance, self-discharge rate, and thermal behavior. These discrepancies, though seemingly 

minor, accumulate over time and usage, leading to cell imbalances that degrade system performance [8]. 

One key source of imbalance is uneven charge and discharge cycles. Cells connected in series must carry the same 

current, but due to capacity differences, some cells reach voltage limits earlier. Consequently, the BMS must halt 

charging or discharging to protect these cells, leaving the remaining capacity unused [9]. This results in reduced 

usable energy, impacting range and efficiency. 

Thermal gradients within the pack are another contributor. Cells located near cooling interfaces tend to operate at 

more stable temperatures than those insulated by neighboring cells. Since temperature affects internal resistance 

and electrochemical kinetics, uneven heating accelerates imbalance and creates hotspots that further degrade the 

cells involved [10]. 

In commercial EVs, high-frequency fast charging, regenerative braking, and variable load cycles amplify these 

effects. Frequent shallow cycles and aggressive charging routines cause specific cells to deteriorate faster than 

others, reducing overall system reliability. 

Over time, imbalance also leads to power fade—a reduction in the pack’s ability to deliver current under load. 

The weakest cells throttle system output, triggering safety limits and leading to reduced acceleration, decreased 

range, or unexpected shutdowns. These issues necessitate preemptive maintenance, increased downtime, and 

higher operating costs. 

To address these challenges, module balancing strategies are integrated into the BMS, either through passive 

dissipation or active energy redistribution. Without such measures, cell imbalance accelerates degradation and 

limits the functional lifespan of the battery pack [11]. 

2.3 Overview of Battery Management Systems (BMS)  

The Battery Management System (BMS) is the central intelligence of the battery pack, responsible for ensuring 

safe, reliable, and efficient operation. It performs continuous real-time monitoring of parameters such as cell 

voltage, current, temperature, and state of charge (SOC). These readings are essential for balancing, thermal 

regulation, protection against overcharge/discharge, and system diagnostics [12]. 

BMS architectures are typically centralized, modular, or distributed. In centralized systems, a single controller 

handles the entire pack, which is cost-effective but less scalable. Modular systems divide control across module-
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level units that report to a master BMS, improving fault tolerance and scalability. Distributed systems integrate 

sensors and microcontrollers at the cell level, enhancing granularity and responsiveness at the expense of 

complexity and cost [13]. 

A key function of the BMS is SOC estimation, which determines how much energy remains in the pack. 

Algorithms such as Coulomb counting, Kalman filters, and machine learning models are used to improve 

estimation accuracy under dynamic operating conditions. Accurate SOC estimation is critical for optimizing 

charging protocols and ensuring energy availability for regenerative braking and auxiliary loads [14]. 

The BMS also provides cell balancing, which is vital for maintaining voltage uniformity across cells. This is 

achieved through passive balancing—dissipating excess charge via resistors—or active balancing, which 

redistributes energy among cells using capacitive, inductive, or transformer-based circuits. The choice depends 

on system cost, energy efficiency, and design constraints [15]. 

Thermal management is closely coordinated with the BMS. Temperature sensors placed across the pack feed data 

into algorithms that control liquid or air cooling systems. Hotspots are identified and mitigated in real time, 

extending battery lifespan and reducing safety risks. 

Additionally, the BMS communicates with other vehicle systems through protocols such as CAN (Controller Area 

Network), allowing seamless interaction with the motor controller, charger, and vehicle diagnostics unit. 

As commercial EVs become more complex and connected, the BMS is evolving into an adaptive, software-

defined platform, capable of integrating machine learning, cloud diagnostics, and over-the-air updates to ensure 

long-term performance and safety [16]. 

 

3. PASSIVE BALANCING TECHNIQUES: SIMPLICITY AND LIMITATIONS 

3.1 Working Principles of Passive Balancing  

Passive balancing is the simplest and most cost-effective technique for maintaining voltage uniformity among 

battery cells in a pack. Its working principle relies on dissipating excess charge from higher-voltage cells as heat, 

rather than redistributing energy to lower-voltage cells [9]. This method ensures that all cells converge toward the 

voltage of the weakest or lowest-capacity cell, preventing overcharging and undercharging across the pack. 

Typically, a shunt resistor is connected in parallel with each cell or cell group. During balancing, the Battery 

Management System (BMS) activates a switch—often a field-effect transistor (FET)—that allows current to flow 

through the resistor, thereby bleeding off surplus energy from the overcharged cell [10]. The discharge continues 

until the voltage of the higher-energy cell matches that of the lower ones. 

This process usually occurs during the final phase of charging, when most cells are nearing full state-of-charge 

(SOC). By keeping all cells within a narrow voltage window, passive balancing enhances pack stability and 

prolongs life by avoiding overvoltage stress on individual cells [11]. 

While the electrical simplicity and low cost of passive balancing make it attractive, particularly for low- to mid-

power applications, the energy dissipation involved results in thermal losses. Therefore, its long-term use in 

commercial EV fleets, where efficiency and uptime are mission-critical, must be evaluated carefully in terms of 

thermal and operational trade-offs [12]. 

3.2 Resistor-Based Dissipation and Heat Management  

The defining feature of passive balancing is the dissipation of excess energy from overcharged cells via resistors. 

This resistor-based discharge generates heat, which must be managed effectively to avoid adverse impacts on both 

cell performance and pack safety [13]. In practice, surface-mount resistors are employed in parallel with each cell, 

activated by MOSFET switches controlled by the BMS. 

The power dissipation (P) in each resistor is calculated using Ohm’s law, where P=I2RP = I^2RP=I2R or P=V2/RP 

= V^2/RP=V2/R. The selection of resistor values is critical: a lower resistance increases balancing speed but 

generates more heat, while a higher resistance limits current flow but reduces thermal load. Design engineers often 

balance these trade-offs based on cell chemistry, module layout, and cooling system capabilities [14]. 

Heat management becomes particularly important in large-format modules or tightly packed arrays where thermal 

conductivity is limited. Poor heat dissipation can lead to thermal hotspots, accelerating cell aging or triggering 

thermal runaway in extreme cases. Therefore, some systems integrate thermal pads, heat sinks, or forced-air 

cooling mechanisms around resistor clusters to facilitate heat removal [15]. 

An additional consideration is balancing frequency and duty cycle. Passive balancing is typically slow and 

intermittent, designed not for rapid correction but for long-term maintenance. Continuous operation may 

overwhelm the local thermal environment, especially in warm climates or under fast-charging conditions. 
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Because energy is lost rather than transferred, the overall efficiency of passive balancing is low. However, for 

commercial EVs with moderate energy throughput and controlled charge cycles, such as municipal service 

vehicles or light delivery vans, passive balancing may still offer a reliable and economical solution [16]. 

3.3 Applications and Use Cases in Light Commercial EVs  

Despite its limitations, passive balancing continues to be widely deployed in light commercial EVs, particularly 

where cost sensitivity and simplicity outweigh the need for high energy efficiency. Vehicles such as electric 

delivery scooters, low-speed municipal vehicles, and compact vans benefit from passive balancing’s low 

component count, ease of integration, and predictable behavior [17]. 

In applications with relatively shallow depth-of-discharge cycles, like postal vans or grocery delivery EVs 

operating on fixed short-range routes, the risk of severe imbalance is lower. Passive systems in these settings 

primarily serve as a preventative measure, fine-tuning SOC discrepancies over time rather than reacting to 

significant mismatches. Since these vehicles are charged routinely and under controlled conditions, the balancing 

process can be aligned with scheduled overnight charging windows, minimizing disruption [18]. 

Furthermore, fleet operators with centralized depots are better equipped to manage thermal buildup associated 

with passive balancing. Integrated air conditioning or exhaust fans in charging bays can be employed to help 

dissipate resistor-generated heat, mitigating risks of localized overheating [19]. 

Another use case is found in hybrid or range-extended EVs, where electric-only range is limited, and the battery 

plays a supplementary role. In such contexts, the marginal efficiency loss from passive balancing is acceptable, 

given the minimal dependence on full electric propulsion. 

While not ideal for high-performance or fast-charging environments, passive balancing remains relevant where 

simplicity, affordability, and operational predictability are prioritized over fine-grained energy optimization [20]. 

3.4 Limitations in Energy Efficiency and Scalability  

While passive balancing offers simplicity, its inherent limitations constrain its application in high-capacity, high-

performance EV fleets. The most significant drawback is poor energy efficiency. Since excess charge is dissipated 

as heat, the system effectively wastes stored energy that could otherwise be redistributed to weaker cells—

resulting in cumulative energy loss over repeated cycles [21]. 

This inefficiency becomes more pronounced in larger battery packs, where capacity differences among cells are 

magnified. Passive balancing scales poorly with pack size, as the resistors must handle higher currents or longer 

activation times, thereby increasing thermal load and hardware stress. Without sufficient thermal control, the risk 

of uneven heating and localized degradation also increases [22]. 

Moreover, passive systems are reactive rather than predictive. They cannot dynamically respond to operating 

conditions, usage history, or environmental changes. This lack of adaptability limits their effectiveness in fleets 

experiencing variable driving cycles or operating in diverse climates. 

 

Table 1: Comparative Characteristics of Passive vs. Active Balancing 

Characteristic Passive Balancing Active Balancing 

Response Speed Slow (requires full charge cycles) 
Fast (can operate during charge, discharge, or idle 

states) 

Energy Efficiency Low (energy dissipated as heat) High (energy transferred between cells) 

Thermal Management 

Need 

High (due to resistor heat 

dissipation) 

Low to Moderate (minimal excess heat 

generation) 

Hardware Complexity 
Low (simple resistors and 

switches) 

High (requires capacitors, inductors, or complex 

switch networks) 

Software Complexity Basic control logic 
Advanced control with feedback loops and 

predictive algorithms 

Cost Low initial cost Higher initial cost but lower lifecycle cost 

Scalability Limited for high-capacity systems 
Highly scalable across modular and high-

capacity systems 
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Characteristic Passive Balancing Active Balancing 

Suitability for Fleets 
Best for light-duty, predictable 

usage profiles 

Preferred for dynamic, high-utilization, or long-

range fleets 

In summary, while passive balancing fulfills basic voltage management requirements in light EV applications, its 

limitations necessitate more adaptive, efficient strategies for demanding commercial contexts involving high 

energy throughput and long-term battery health management [23]. 

 

4. ACTIVE BALANCING STRATEGIES: INTELLIGENT ENERGY REDISTRIBUTION  

4.1 Core Principles and Control Strategies  

Active balancing represents a significant advancement over passive techniques by redistributing energy from 

higher-charged cells to lower-charged ones rather than dissipating it as heat. The central principle is energy 

conservation, which results in improved overall pack efficiency, extended range, and better long-term battery 

health [13]. Active balancing is particularly relevant for commercial EVs where prolonged operating cycles and 

heavy-duty performance demand maximum energy utilization. 

Unlike passive systems that simply equalize voltages by draining charge, active balancing leverages controlled 

energy transfer using intermediate storage elements—such as capacitors or inductors—or direct charge shuttling 

mechanisms between cells. These systems rely on high-speed digital signal processors (DSPs) or microcontrollers 

to continuously monitor cell voltages and control energy routing dynamically [14]. 

The control strategy in active balancing is either centralized—where a master controller orchestrates balancing 

across the entire pack—or distributed, with intelligent balancing modules at the cell or module level. The 

distributed approach enhances fault tolerance and modularity but may increase system complexity and cost [15]. 

Timing and frequency of balancing are also critical. Unlike passive systems that activate during or after charging, 

active methods can operate during driving, regenerative braking, or idle states, making them more versatile. 

Adaptive algorithms—including fuzzy logic, PID control, and model predictive control (MPC)—are used to 

optimize energy flow based on SOC variance, temperature, and real-time usage demands [16]. 

These systems enable a proactive approach to pack health management, making them ideal for EV fleets that 

require consistency, longevity, and scalability. 

4.2 Capacitor-Based Balancing  

Capacitor-based balancing is one of the earliest and most widely studied active methods. It operates by charging 

a capacitor from a higher-voltage cell and then discharging it into a lower-voltage cell. This process is repeated 

sequentially across cells to achieve voltage equilibrium [17]. The charge-discharge cycle is typically controlled 

using bidirectional switches or multiplexers, and the speed of balancing depends on the capacitor’s size and the 

voltage differential between cells. 

A major advantage of this method is its simplicity and low switching loss. Since capacitors can transfer energy 

relatively quickly and without significant conversion inefficiencies, the method is suitable for moderate balancing 

requirements, especially in mid-sized battery packs used in light-duty commercial EVs [18]. 

However, the architecture requires careful timing and synchronization. If not managed precisely, simultaneous 

energy flow can create parasitic losses or resonance effects, especially in multi-module systems. Modern 

implementations often employ ultracapacitors or supercapacitors due to their high energy density and fast response 

time [19]. 

Capacitor-based systems are best suited for applications where balancing needs are moderate but occur 

frequently—such as urban delivery vehicles, where frequent stops and starts create dynamic load profiles. Though 

not the most powerful method for large-scale rebalancing, capacitor-based systems strike a balance between 

energy efficiency and hardware complexity in practical fleet applications [20]. 

4.3 Inductor-Based Energy Transfer  

Inductor-based active balancing systems transfer energy between cells using magnetic fields. When a higher-

voltage cell discharges through an inductor, energy is temporarily stored in the magnetic field. This energy is then 

released to a lower-voltage cell, completing the transfer. The core principle is inductive coupling, controlled via 

power electronics and switching circuitry [21]. 

One of the major advantages of this approach is its high power-handling capacity, making it ideal for large-scale 

energy redistribution in high-capacity commercial EV battery packs. Inductor-based systems are particularly 
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effective when SOC mismatches are significant, or when the energy transfer must occur quickly under dynamic 

conditions [22]. 

Design variants include multi-winding inductors, flyback converters, and isolated DC-DC converters, each 

providing unique trade-offs in terms of component size, switching loss, and complexity. Flyback topologies, for 

instance, offer electrical isolation between cells, enhancing safety in large packs [23]. 

The main challenges involve electromagnetic interference (EMI), core saturation, and thermal management. These 

systems require robust shielding and careful PCB layout design to minimize noise and ensure stable operation 

under fluctuating loads. 

Inductor-based balancing has been widely applied in electric buses and high-performance vans, where 

regenerative braking and fast-charging cycles result in frequent and deep SOC fluctuations. Despite its cost and 

complexity, this technique offers excellent energy conservation and robust response in commercial-scale EV 

applications [24]. 

4.4 Switched Capacitor and Charge Shuttle Topologies  

Switched capacitor balancing and charge shuttle systems are advanced techniques that enhance flexibility and 

control over energy distribution. In switched capacitor topologies, multiple capacitors are dynamically switched 

between adjacent cells to equalize their voltages. The capacitors alternate their connections via MOSFETs in a 

cyclic or adaptive sequence [25]. 

The key benefit of this system is that it avoids energy conversion losses since no inductive components are 

involved. It also eliminates the need for central controllers in distributed systems. Switched capacitor balancing 

is compact and relatively easy to implement at the module level, which makes it attractive for distributed BMS 

architectures in multi-module battery packs [26]. 

However, balancing speed is constrained by the capacitor size and switching frequency. To improve performance, 

some systems incorporate adaptive control schemes or operate multiple capacitor bridges simultaneously. 

Advanced digital controllers regulate the switching sequence to avoid unnecessary energy looping or parasitic 

oscillation [27]. 

Charge shuttle balancing extends this concept further by transferring energy between non-adjacent cells using a 

movable energy carrier (a capacitor or flying capacitor). Unlike other systems, this topology allows energy to be 

rerouted across different sections of the pack, not just neighboring cells. This is particularly beneficial in large 

battery arrays where imbalances may be distributed across multiple modules [28]. 

These topologies have shown success in autonomous fleet vehicles and next-generation platform EVs where 

scalability, modularity, and fine-grained control are essential. Their lightweight nature and lower EMI footprint 

make them suitable for high-efficiency applications requiring minimal thermal impact and high balancing 

precision [29]. 

 
Figure 2: "Active Balancing Flowchart with Control Loops and Energy Transfer Mechanisms" 

This figure visually represents capacitor, inductor, and shuttle-based paths, including real-time voltage 

sensing and feedback control modules. 
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4.5 Thermal and Efficiency Advantages over Passive Methods  

Compared to passive balancing, active systems offer substantial improvements in thermal performance and energy 

efficiency. Since energy is transferred rather than dissipated, the total system energy is preserved, increasing 

driving range and reducing battery stress [30]. This is particularly important in commercial EVs with long routes 

and frequent usage, where cumulative energy savings can translate to tangible economic benefits. 

Active balancing also minimizes hotspot formation because heat generation is limited to switching elements and 

not resistive discharge pathways. This leads to more uniform thermal distribution across cells, lowering the risk 

of thermal runaway and enhancing the reliability of SOC and SOH estimation models [31]. 

Efficiency gains from active balancing can exceed 95% in optimized systems, compared to under 70% in passive 

configurations. The reduced thermal load also lessens the burden on auxiliary cooling systems, freeing up more 

energy for propulsion and reducing overall vehicle complexity. 

From a lifecycle perspective, reduced thermal and electrochemical stress slows the rate of capacity fade, extending 

battery lifespan and reducing the frequency of replacements. These gains are particularly valuable for fleet 

operators seeking predictable, long-term performance with minimal maintenance interruptions [32]. 

Thus, active balancing is not merely a technical upgrade—it represents a strategic investment in efficiency, safety, 

and economic viability for modern commercial EVs. 

 

5. INTEGRATION WITH REAL-TIME MONITORING AND PREDICTIVE ALGORITHMS 

5.1 Role of Sensors, Microcontrollers, and Embedded Systems  

Modern Battery Management Systems (BMS) rely heavily on embedded sensors and microcontrollers to gather 

real-time data and execute balancing strategies with speed and precision. These components serve as the sensory 

and computational core of the BMS, continuously tracking voltage, current, temperature, and impedance at both 

the cell and module level [17]. 

Voltage sensors monitor individual cell voltages, detecting early signs of imbalance or overcharging. Current 

sensors, often based on Hall-effect technology, capture dynamic charging and discharging profiles. Thermal 

sensors, such as thermistors or RTDs, monitor localized temperatures and help detect hotspots or failures in 

thermal management systems [18]. 

The data collected is processed by microcontrollers (MCUs)—compact, power-efficient computing units 

programmed with algorithms for SOC estimation, fault detection, and balancing control. Higher-end systems 

employ Digital Signal Processors (DSPs) or embedded System-on-Chip (SoC) platforms for more 

computationally intensive tasks such as real-time predictive analytics and adaptive control logic [19]. 

These sensors and processors form a closed-loop system, ensuring fast response to anomalies while maintaining 

safety margins and extending battery life. In advanced commercial EVs, sensor networks also feed into vehicle-

wide diagnostics systems through communication protocols such as CAN, LIN, or FlexRay, enabling integration 

with fleet management and remote monitoring platforms. 

Ultimately, the synergy between hardware sensors and embedded intelligence allows BMS units to evolve from 

static controllers into adaptive cyber-physical systems, capable of predictive reasoning and dynamic system 

optimization [20]. 

5.2 Machine Learning Models for Predictive Balancing  

The integration of machine learning (ML) into Battery Management Systems marks a new era in predictive energy 

management. Traditional balancing systems operate reactively, correcting imbalance only after voltage divergence 

occurs. In contrast, ML enables predictive balancing, where the system anticipates imbalance based on usage 

patterns, environmental factors, and cell degradation trends [21]. 

One of the most effective applications of ML in this domain is State of Health (SOH) prediction. Algorithms such 

as Support Vector Machines (SVM), Random Forests, and Gradient Boosting Trees analyze features like internal 

resistance growth, temperature variance, and capacity fade to estimate future battery performance [22]. These 

models help pre-emptively schedule balancing operations or identify cells at risk of accelerated degradation. 

Another key area is load forecasting. By training models on past driving profiles, GPS data, and environmental 

inputs, the BMS can anticipate high-demand intervals (e.g., inclines, acceleration phases) and dynamically 

reconfigure balancing strategies for upcoming stress events [23]. 

Deep Learning techniques, particularly Long Short-Term Memory (LSTM) networks and Recurrent Neural 

Networks (RNNs), have demonstrated effectiveness in forecasting State of Charge (SOC) over time, especially 
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under non-linear usage conditions. These models enable finer control over charge distribution and improved 

energy utilization. 

Reinforcement Learning (RL) is emerging as a technique for optimizing balancing timing and switching actions. 

Through iterative learning in simulated environments, RL agents develop policies that reduce energy losses while 

maintaining thermal safety and voltage uniformity [24]. 

 

Table 2: ML Algorithms Applied to EV Battery Predictive Maintenance and Balancing 

ML Algorithm 
Typical 

Accuracy 
Application Scope Data Requirements 

Integration 

Feasibility 

Support Vector 

Machine (SVM) 

Moderate to 

High (75–

85%) 

SOH estimation, 

early fault 

classification 

Requires clean, pre-labeled 

datasets 

High (lightweight, 

suitable for 

embedded systems) 

Random Forest 

(RF) 

High (85–

90%) 

Feature ranking, 

degradation pattern 

identification 

Medium-large datasets; 

tolerates noisy inputs 

Moderate (resource 

intensive at runtime) 

Long Short-Term 

Memory (LSTM) 

Very High 

(90–95%) 

SOC/SOH 

prediction, time-

series forecasting 

Sequential 

voltage/temp/current data 

Moderate (requires 

more compute and 

memory) 

Reinforcement 

Learning (RL) 

Variable 

(policy 

dependent) 

Real-time balancing 

control, adaptive 

optimization 

Large training sets with 

simulation or real-time 

feedback 

Low to Moderate 

(complex setup, high 

training cost) 

The adoption of these models not only improves balancing outcomes but also extends the strategic capabilities of 

the BMS, enabling data-informed lifecycle management and intelligent fleet optimization. 

5.3 Diagnostic Feedback Loops and Error Handling  

Effective battery management requires more than just monitoring and balancing—it demands continuous 

diagnostic validation to ensure safety, reliability, and system longevity. Modern BMS architectures incorporate 

real-time feedback loops that verify voltage, current, and temperature readings against expected thresholds, 

issuing alerts or triggering protective actions when anomalies are detected [25]. 

Feedback loops are also used to verify the success of balancing actions. After a balancing cycle, the BMS re-

evaluates the voltage spread across cells to confirm convergence. If deviation persists, the system may classify 

the affected cell as underperforming or failing, flagging it for deeper diagnostics or physical inspection. 

Error handling mechanisms rely on redundancy and fault classification logic. For example, if a sensor reading 

conflicts with neighboring measurements, the BMS can apply majority-voting or Kalman filtering to isolate 

potential hardware faults. Systems also log error codes and timestamps, creating a traceable diagnostic history 

for technicians and fleet operators [26]. 

In fleet-scale applications, these diagnostics are often uploaded to cloud platforms where advanced analytics 

tools aggregate data across vehicles. This enables fleet-wide health assessments and predictive maintenance 

scheduling—reducing downtime and extending service intervals. 

Thus, robust feedback loops and error-handling protocols are essential to maintaining resilience and reliability 

in commercial EV energy systems. 

5.4 Software-Hardware Co-Design in Advanced BMS  

The evolution of BMS architecture increasingly favors software-hardware co-design, a methodology in which 

both the physical circuitry and software algorithms are developed in parallel to optimize performance and 

flexibility. This approach is particularly important for active balancing, where hardware switching precision must 

align seamlessly with software-driven control logic [27]. 

Co-design begins at the modeling stage, where system-level simulations are used to evaluate switching timing, 

thermal effects, and balancing frequency under various operating conditions. Embedded software is then tailored 

to leverage the strengths and limitations of the chosen hardware platform—be it MCU-based, FPGA-enabled, or 

DSP-driven [28]. 
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For example, balancing decisions based on ML inference must be synchronized with MOSFET gating to ensure 

efficient energy transfer. This requires low-latency processing pathways and real-time task scheduling, often 

implemented using real-time operating systems (RTOS) or hardware accelerators [29]. 

Hardware-software co-design also enhances cybersecurity by embedding secure bootloaders, cryptographic 

protocols, and over-the-air update functionality, protecting the BMS from tampering and data breaches in 

networked fleet environments. 

By fusing predictive algorithms with dedicated circuit paths and robust firmware architectures, co-design enables 

scalable, intelligent, and secure energy systems—essential traits for the next generation of commercial electric 

vehicles [30]. 

 

6. CASE STUDIES IN COMMERCIAL EVs 

6.1 Fleet Case Study 1 – Logistics Van Fleet (Passive System)  

In this case study, a regional delivery company operating a fleet of 40 electric vans implemented a passive 

balancing system across all vehicles to manage cost while transitioning from internal combustion vehicles. The 

vehicles, designed for urban parcel delivery, utilized lithium iron phosphate (LFP) battery packs with a nominal 

capacity of 60 kWh per van. Each pack employed resistor-based passive balancing controlled via a centralized 

BMS [25]. 

Over a 24-month operational period, the fleet demonstrated relatively stable performance during the first year, 

primarily due to routine daily charge-discharge cycles that were shallow and predictable. Charging was typically 

done overnight at depot-based level-2 chargers, allowing the balancing circuitry ample time to activate during the 

final stages of the charge cycle [26]. 

However, as the fleet aged and the cells accumulated differential degradation, voltage drift between modules 

increased, particularly in the 13th to 18th months of operation. This led to a growing number of overvoltage alerts 

and SOC inaccuracies. Maintenance logs indicated higher frequency of range complaints and reduced regenerative 

braking performance, linked to premature charge cutoffs caused by cell imbalance [27]. 

To compensate, the operator initiated periodic BMS firmware updates and began manually rotating battery 

modules within the fleet to distribute usage wear—a workaround that temporarily improved performance but did 

not fully resolve the root imbalance issue. While passive balancing succeeded in cost control and initial 

integration, it showed limited adaptability in dynamic high-throughput use cases, especially under increasing 

performance demands [28]. 

6.2 Fleet Case Study 2 – Ride-Share EVs (Active Capacitor-Based System)  

A nationwide ride-share platform launched a pilot with 100 electric sedans in major metropolitan areas using a 

BMS equipped with active capacitor-based balancing. The EVs, primarily used in high-traffic urban corridors, 

featured 75 kWh NMC-based battery packs and employed bidirectional switched capacitors to actively 

redistribute charge between cells during idle and driving modes [29]. 

This balancing method allowed the system to detect voltage discrepancies during daily high-frequency charge-

discharge events—typical of ride-share use—and redistribute excess charge in real time. Each vehicle operated 

for approximately 10–12 hours daily, with rapid charging cycles between shifts and occasional DC fast charging. 

These patterns typically exacerbate imbalance in passive systems, but the dynamic balancing capability mitigated 

significant SOC drift [30]. 

Operational data over 18 months showed a 21% improvement in average pack voltage uniformity and 12% 

reduction in overall thermal gradient variability compared to a control group using traditional passive balancing. 

Moreover, there was a measurable 7–9% gain in usable capacity as balancing allowed the pack to avoid early 

charge terminations due to single-cell overvoltage [31]. 

The BMS also integrated balancing history logs, enabling engineers to trace recurring imbalance patterns back to 

specific usage profiles or environmental triggers. Predictive alerts were then configured to schedule preventive 

maintenance, replacing or conditioning modules showing accelerated aging. 

Although the initial cost per unit was higher than for passive systems, the reduction in service calls, longer 

intervals between battery conditioning, and improved user satisfaction helped justify the investment over a two-

year return-on-investment horizon [32]. 

6.3 Fleet Case Study 3 – E-Bus Network with Predictive AI-Integrated BMS  

An electric public bus system deployed by a municipal transportation agency in Asia serves as a benchmark 

example of integrating predictive analytics and AI-based balancing in high-capacity commercial EVs. The fleet 
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included 150 electric buses, each powered by 300 kWh high-voltage battery packs, managed by an advanced BMS 

using reinforcement learning and predictive maintenance algorithms [33]. 

The system featured distributed microcontrollers connected through a modular BMS that monitored real-time 

sensor data—including cell voltage, thermal gradients, and current throughput—and fed this data into a cloud-

based analytics platform. Machine learning models trained on operational data were used to anticipate imbalances, 

predict degradation hotspots, and autonomously trigger balancing cycles during non-peak hours [34]. 

The reinforcement learning agent, integrated into the balancing module, learned to minimize energy loss and 

thermal buildup by adapting its switching strategies based on historical pack behavior and environmental context. 

As a result, the system dynamically optimized balancing frequency, direction, and intensity—achieving greater 

than 96% voltage uniformity across all modules over a 12-month rolling average [35]. 

Field performance data revealed several key advantages: 

• 28% reduction in unplanned maintenance events related to battery errors. 

• 18% increase in average battery lifespan forecast based on SOH projection trends. 

• Improved route availability, with fewer battery-related delays and more predictable charging 

requirements. 

Additionally, integration with the city’s smart grid infrastructure allowed the buses to transmit predictive battery 

health data to centralized maintenance hubs, enabling fleet-wide optimization. When early imbalance or thermal 

issues were detected in a subset of vehicles, preventive battery swaps were scheduled before service interruptions 

occurred [36]. 

While the system required significant initial investment in cloud infrastructure, training data, and cyber-physical 

system design, it provided a future-ready platform for intelligent fleet energy management. This case highlights 

how predictive, AI-integrated balancing is evolving from a high-tech novelty into a necessity for scalable, resilient 

commercial EV deployments [37]. 

 

7. COMPARATIVE EVALUATION OF BALANCING TECHNIQUES 

7.1 Efficiency Metrics: SOC Consistency, Heat Loss, and Runtime  

One of the most important criteria for evaluating battery balancing techniques in commercial EVs is State of 

Charge (SOC) consistency. SOC drift between cells leads to underutilization of available capacity, limiting the 

effective range of the vehicle. Active balancing techniques—especially inductor and switched-capacitor 

systems—have shown the ability to maintain voltage spreads within 2–5 mV per cell, compared to 15–30 mV in 

passive systems during peak load cycles [35]. 

This tighter SOC regulation translates into more consistent energy delivery, particularly during acceleration, hill 

climbs, or regenerative braking events. Moreover, tighter SOC alignment improves the accuracy of SOC 

estimation models, enabling better trip planning and predictive charging strategies [36]. 

Heat loss is another significant performance indicator. Passive systems dissipate excess energy through resistive 

components, leading to heat accumulation near resistors. Thermal audits conducted in mid-sized EV fleets 

revealed that resistor-based balancing could contribute up to 4–7% of total battery thermal load, necessitating 

additional cooling effort. In contrast, active systems showed less than 2% thermal contribution, preserving thermal 

headroom for high-performance operation [37]. 

Runtime efficiency, or the balancing system’s operational power draw and timing, is also critical. Active systems 

operating during driving or regenerative phases offer on-the-fly correction without waiting for dedicated charge 

cycles. This characteristic allows them to deliver balancing corrections with minimal system overhead, whereas 

passive systems must rely on long, uninterrupted idle periods to equalize cell voltages effectively [38]. 

 

Table 3: Performance Metrics of Balancing Systems Across EV Fleets 

Balancing Type 
SOC Deviation 

Range 

Energy Loss (% of 

Pack Capacity) 

Average Balancing 

Time per Cycle 

Thermal Load 

Contribution 

Passive 

Balancing 
15–30 mV 4–7% 

3–5 hours (typically 

post-charging) 

High (localized around 

resistors) 

Active Capacitor-

Based 
5–10 mV 2–4% 

1–2 hours (can operate 

during drive) 
Moderate 
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Balancing Type 
SOC Deviation 

Range 

Energy Loss (% of 

Pack Capacity) 

Average Balancing 

Time per Cycle 

Thermal Load 

Contribution 

Active Inductor-

Based 
2–5 mV <2% 30–60 minutes Low (well-distributed) 

Switched 

Capacitor 
3–8 mV 2–3% 1–2 hours Low to Moderate 

Predictive AI-

Integrated 
<2 mV <1.5% 

Adaptive (based on 

usage profile) 

Very Low (optimized in 

real-time) 

7.2 Impact on Battery Lifecycle, Range, and Downtime  

Balancing systems significantly influence the degradation profile of lithium-ion cells. Voltage imbalances lead to 

localized overcharging and deep discharging of specific cells, both of which accelerate electrochemical wear, gas 

formation, and structural degradation of electrodes. Over time, this causes irreversible capacity loss and impairs 

the battery’s ability to deliver peak power [39]. 

Studies across urban EV bus fleets showed that vehicles with advanced active balancing systems retained up to 

12% more capacity after three years compared to those using passive methods. These systems were also able to 

maintain SOH above 90% longer into the battery’s service life, thereby postponing costly pack replacements [40]. 

Another downstream effect is range stability. Vehicles with unbalanced packs are prone to early charge 

terminations and unpredictable mileage, especially under high-load conditions. Ride-share EVs equipped with 

switched-capacitor balancing systems reported a 9% improvement in daily range stability, resulting in fewer 

charge interruptions and improved driver satisfaction [41]. 

Moreover, balancing precision affects cell utilization equity. When all cells operate within a tight SOC band, aging 

is distributed more evenly, reducing the emergence of weak cells that might trigger safety cutoffs. This uniformity 

helps maintain battery redundancy and extends the pack’s usable lifetime. 

Operational downtime due to battery-related maintenance is a critical factor for fleet managers. Fleets using 

predictive balancing integrated with real-time diagnostics experienced 28–32% fewer maintenance events over a 

24-month period. Early detection of imbalance trends enabled preemptive conditioning or module rotation, 

minimizing unexpected service disruptions [42]. 

In short, effective balancing does not merely preserve battery health—it transforms battery performance from 

reactive to resilient, ensuring higher reliability, greater uptime, and better total cost of ownership for fleet 

operators. 

7.3 Cost-Benefit Analysis for Commercial Fleets  

From a financial perspective, the selection of a balancing strategy directly impacts both capital expenditures 

(CapEx) and operational expenditures (OpEx). Passive systems, with their low-cost resistors and simple circuitry, 

have a unit cost advantage—often 30–40% cheaper at the point of integration compared to active systems [43]. 

However, this initial saving is frequently offset by higher long-term maintenance costs. Passive systems lead to 

faster pack degradation and higher thermal loads, requiring more frequent service checks, premature pack 

replacements, and supplemental cooling systems. These factors collectively drive up OpEx over a multi-year fleet 

operation cycle. 

Active balancing systems, though more expensive upfront due to the need for capacitors, inductors, and precision 

controllers, offer longer battery life, lower energy waste, and fewer thermal interventions. For instance, a cost 

model analysis across five municipal EV fleets indicated that vehicles equipped with active balancing achieved 

15–20% higher net battery value retention over four years when compared to passive-only vehicles [44]. 

Additionally, predictive active systems allowed for better fleet utilization planning, reducing the risk of 

unscheduled downtime. Their ability to delay full battery replacements by even 6–12 months can significantly 

impact return on investment (ROI), especially in high-utilization fleets such as logistics or transit applications. 

In economic terms, active balancing represents a strategic investment—a higher initial cost justified by a stronger 

performance profile and reduced lifecycle expenditures, particularly for mission-critical commercial EV 

applications [45]. 

7.4 Real-World Implementation Constraints  
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Despite the advantages of active and predictive balancing systems, real-world implementation is often hindered 

by cost barriers, integration complexity, and supply chain limitations. Smaller OEMs or budget-restricted fleet 

operators may lack access to engineering talent or infrastructure to deploy advanced balancing architectures [46]. 

Standardization is also limited. Balancing strategies vary by battery chemistry, vehicle class, and BMS firmware, 

creating interoperability challenges. Regulatory guidance on balancing performance remains underdeveloped, 

leaving implementation decisions largely to OEM discretion. 

To bridge this gap, scalable, modular systems with standardized communication protocols are essential. Industry 

collaboration and open-source platforms can accelerate adoption and reduce long-term cost burdens [47]. 

 

8. EMERGING TRENDS AND FUTURE DIRECTIONS 

8.1 Next-Generation Battery Chemistries and Challenges for Balancing  

The evolution of electric vehicle (EV) batteries is rapidly advancing beyond traditional lithium-ion configurations. 

Next-generation chemistries such as lithium-sulfur (Li-S), solid-state batteries (SSBs), and lithium-metal offer 

higher energy densities, faster charging potential, and improved safety profiles. However, these chemistries 

introduce new complexities for balancing systems, particularly in commercial EV applications [38]. 

Lithium-sulfur cells, for example, exhibit high initial capacity but suffer from rapid capacity fade due to 

polysulfide shuttling effects. This leads to significant intra-pack imbalance within just a few dozen cycles unless 

carefully managed by an adaptive and chemistry-aware BMS. Balancing algorithms must evolve to account not 

just for voltage differentials but also dynamic shifts in cell resistance and capacity over short timeframes [39]. 

Solid-state batteries promise to eliminate flammable liquid electrolytes, but they introduce new thermal and 

interfacial resistance inconsistencies. These variations require high-resolution thermal and impedance monitoring 

to ensure uniform current distribution during charge cycles. Moreover, their limited commercial maturity poses 

standardization challenges for BMS developers [40]. 

As chemistries become more diverse, multi-chemistry balancing frameworks will become essential, especially for 

hybrid commercial fleets that integrate different energy storage types across platforms. Such systems must feature 

reconfigurable control logic and modular sensing architectures, supported by ML models trained on specific 

degradation and balancing behavior profiles for each chemistry. 

Thus, emerging battery types will not only require new materials and architectures, but also reimagined balancing 

strategies that offer predictive, real-time, and chemistry-specific management for high-performance and long-

lifespan operation. 

8.2 Integration with Vehicle-to-Grid (V2G) Systems  

As electric vehicles begin to interact with the grid through Vehicle-to-Grid (V2G) technologies, the role of the 

Battery Management System (BMS) becomes more complex and strategic. V2G allows commercial EVs to export 

stored energy back to the grid during peak demand, contributing to grid stability while generating revenue for 

fleet operators. However, this bidirectional energy flow poses new challenges for cell balancing [41]. 

Unlike conventional charging and discharging patterns, V2G cycles are often determined by grid-side algorithms, 

potentially triggering high-frequency partial cycling and thermal variation. These factors accelerate imbalance 

formation and complicate predictive modeling. A BMS operating within a V2G ecosystem must therefore include 

bidirectional balancing capabilities, adaptable across both discharge-to-vehicle and discharge-to-grid phases [46]. 

Moreover, the timing of balancing events becomes critical. Balancing must not interfere with grid-timed 

discharges, requiring real-time prioritization logic. Balancing actions may need to occur opportunistically—

during off-peak hours, regenerative events, or predictive idle states—in order to maintain SOC uniformity without 

sacrificing grid service reliability [47]. 

To manage these dynamics, V2G-integrated BMS platforms are increasingly leveraging cloud connectivity for 

predictive scheduling, as well as blockchain-based energy exchange ledgers for secure transaction handling. These 

enhancements also support fleet-wide coordination of distributed energy resources [48]. 

As the V2G landscape matures, balancing will evolve from a localized function to a grid-aware optimization task, 

reinforcing the BMS’s role as a smart energy node within the broader distributed energy infrastructure [49]. 

8.3 Scalable Modular Balancing for Autonomous Fleets  

With the rise of autonomous commercial vehicles—including robo-delivery vans, automated logistics pods, and 

driverless shuttles—the demand for self-sustaining, intelligent, and modular BMS platforms is accelerating. These 

vehicles operate without human intervention, requiring fault-tolerant and adaptive balancing mechanisms capable 

of ensuring energy stability during extended unmanned operation [50]. 
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Modular balancing architectures are central to this evolution. By organizing the battery pack into independently 

managed modules, each equipped with localized balancing circuits and embedded processors, the system gains 

granular control and redundancy. Modules can be isolated or serviced autonomously in the event of fault detection, 

improving system resilience and minimizing downtime [51]. 

Autonomous fleets also require edge-based inference engines for real-time balancing decision-making. These 

platforms integrate lightweight ML models, capable of operating without continuous cloud connection, allowing 

vehicles to adapt to route variability, ambient temperature shifts, and usage anomalies on the fly [52]. 

Communication between modules uses standardized, fault-tolerant protocols such as CAN-FD or Time-Sensitive 

Networking (TSN), enabling high-speed coordination between propulsion, battery, and navigation systems. 

 

 
Figure 3: “Future-Ready BMS Ecosystem Featuring Cloud Connectivity and AI Control” 

This figure illustrates a connected and intelligent BMS framework with module-level processors, cloud-based 

predictive platforms, bidirectional energy flow paths, and V2G/grid interaction layers. 

 

As the autonomous fleet sector expands, modular, AI-enhanced balancing will serve as a foundation for self-

healing, scalable, and mission-critical energy platforms. 

 

9. POLICY IMPLICATIONS, STANDARDS, AND RECOMMENDATIONS 

9.1 Regulatory Landscape and Safety Standards  

The growing adoption of commercial EVs has led to increasing regulatory scrutiny of battery systems, particularly 

concerning safety, reliability, and thermal risk mitigation. However, specific global standards for battery balancing 

architectures remain underdeveloped, creating inconsistencies in system design, integration, and validation 

processes across manufacturers [53]. 

Currently, balancing strategies fall under broader standards like ISO 26262 (functional safety in road vehicles), 

IEC 62660 (performance of lithium-ion cells for Evs), and SAE J2464 (battery abuse testing procedures), but none 

explicitly address balancing system performance metrics or interoperability [53]. This lack of formalization leaves 

OEMs to make balancing decisions based primarily on internal design goals rather than harmonized best practices. 

Moreover, as battery modules are increasingly integrated into bidirectional systems (such as V2G) and 

autonomous vehicle platforms, existing safety frameworks may no longer provide sufficient guidance on fault 

response, multi-chemistry balancing, or adaptive algorithm regulation. The absence of regulatory mandates for 
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real-time fault detection or predictive balancing audits raises concerns for high-utilization fleets where uptime is 

critical [54]. 

In the coming years, regulators will need to establish benchmark protocols for evaluating balancing accuracy, 

energy efficiency, and thermal conformity, ideally via collaboration with automotive alliances, AI governance 

councils, and energy safety authorities. Such frameworks will ensure that balancing systems evolve not just in 

functionality—but also in compliance, standardization, and long-term safety assurance [55]. 

9.2 Recommendations for OEMs and Fleet Operators  

For Original Equipment Manufacturers (OEMs), the future of battery systems lies in modular, software-defined 

architectures. Integrating active balancing with embedded diagnostics, cloud interfaces, and predictive control 

logic allows for easier firmware updates, adaptive performance tuning, and AI-enhanced lifecycle monitoring 

[56]. OEMs should prioritize co-design strategies, where software and hardware layers are developed in parallel 

to ensure tight control synchronization and reduce system latency [57]. 

Additionally, the implementation of chemistry-aware BMS configurations—capable of tuning balancing protocols 

to battery type (e.g., LFP, NMC, solid-state)—will be critical as multi-chemistry platforms become common in 

diverse fleets. Manufacturers should build reconfigurable balancing logic into their firmware and design for 

scalability to support evolving energy storage trends [58]. 

Fleet operators, on the other hand, must shift focus from one-time integration to continuous performance 

validation. This includes using BMS analytics to track imbalance trends, schedule preemptive maintenance, and 

optimize charge routines. Leveraging cloud-based fleet dashboards, operators can benchmark battery health across 

vehicle groups, identifying underperforming modules early and ensuring better uptime [59]. 

Together, OEMs and fleet operators must collaborate on aligning design intent with operational realities, ensuring 

that balancing systems support not just energy flow—but also resilience, intelligence, and adaptability across 

commercial vehicle lifecycles [60]. 

9.3 Role of Public-Private Collaboration  

Public-private collaboration is vital for driving innovation in battery balancing at scale. Government agencies can 

incentivize R&D through subsidies for intelligent BMS platforms, while also funding standard-setting pilot 

projects with EV fleet operators and OEM consortia [48]. Partnerships with universities and startups can accelerate 

development of open-source balancing firmware and AI models, ensuring inclusivity and transparency [61]. 

Additionally, cloud and grid providers can co-develop interoperability frameworks for BMS-V2G integration, 

ensuring smooth bi-directional energy transactions. Such cross-sector collaboration transforms balancing from a 

proprietary add-on into a public-good infrastructure component, central to the sustainable electrification of 

mobility [60]. 

 

10. CONCLUSION 

10.1 Summary of Key Findings  

This paper has explored the critical role of battery module balancing in enhancing the performance, safety, and 

lifespan of commercial electric vehicles (EVs). Beginning with an examination of battery architecture, we 

established that cell-level imbalances are an unavoidable reality due to variations in manufacturing, usage, and 

environmental conditions. These imbalances, if unmanaged, degrade overall battery performance, reduce usable 

capacity, and accelerate system wear. 

Passive balancing, while cost-effective and simple, was shown to have significant limitations in terms of energy 

efficiency, thermal performance, and long-term scalability. In contrast, active balancing strategies—particularly 

those employing capacitor and inductor-based redistribution—offer higher SOC consistency, improved thermal 

control, and extended battery life. Advanced methods like switched capacitor topologies and charge shuttle 

systems were found to be especially useful in distributed modular BMS architectures. 

The integration of predictive analytics and machine learning adds another layer of sophistication to modern BMS 

platforms. These tools support real-time diagnostics, proactive balancing decisions, and more accurate state-of-

health forecasting. Case studies from logistics fleets, ride-share networks, and public bus systems clearly 

demonstrate how intelligent balancing systems can enhance operational uptime, reduce maintenance costs, and 

extend asset longevity. 

In comparing various methods, we observed that active and AI-integrated balancing systems, though initially more 

expensive, offer clear long-term benefits for commercial EV deployments—especially in applications where 

uptime, reliability, and battery ROI are mission-critical. 
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10.2 Final Thoughts on Sustainable EV Battery Management  

The transition to commercial electric mobility is not simply a matter of replacing internal combustion engines 

with battery packs. It demands a rethinking of how energy is stored, distributed, and sustained over time. Battery 

management—specifically the strategy used for balancing cells—is no longer a background process but a pivotal 

element of system intelligence and operational resilience. 

Looking forward, the rise of new battery chemistries, autonomous fleets, and vehicle-to-grid (V2G) systems will 

reshape the balancing landscape. Future-ready BMS platforms will need to be modular, adaptive, and cloud-

connected—capable of learning from real-world usage data and adjusting their balancing behavior dynamically. 

This evolution will place balancing at the intersection of AI, embedded systems, and grid interoperability. 

For OEMs and fleet operators, the imperative is clear: invest in intelligent, scalable balancing strategies that not 

only meet current regulatory expectations but also anticipate emerging challenges. Doing so will enhance vehicle 

performance, minimize environmental impact through extended battery use, and improve financial sustainability 

by reducing maintenance and replacement costs. 

Ultimately, battery balancing is about more than technical optimization—it is about creating a resilient, future-

proof foundation for commercial electrification. With the right architecture, foresight, and collaborative 

innovation, battery management can evolve into a key enabler of sustainable transportation at scale. 
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