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ABSTRACT 

Today, Artificial Intelligence (AI) and Machine Learning (ML) systems are moving across all industries where critical 

decisions are driven, and their non-deterministic nature is challenging to effectively monitor and hold accountable. In 

this paper, we examine the limitations of typical monitoring tools to capture the intricate, dynamic behavior of AI/ML 

workloads and advocate toward augmenting to a more fortified and contextual observation structure. The paper 

examines the technical hurdles and real-life problems that undermine observability, as well as the standard technical 

components, including data quality validation, model performance tracking, explainability, service tracing, and real-

time drift detection. The study then demonstrates how leading organizations incorporate observability practices into 

the ML lifecycle through an analysis of real-world implementations at Uber, Airbnb, and Netflix. Additionally, we 

review the existing ecosystem of tools, including infrastructure monitors as well as ML personalized ones, and offer 

best practices such as metadata logging, automated alerts, privacy-aware traces, and explainability integration. The 

work concludes on future directions in observability, such as causal observability and federated tracing, but with a 

clear punchline: observability is an underlying cornerstone to building trustworthy, reliable, and ethical AI systems. 
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INTRODUCTION 

Artificial intelligence and machine learning (AI and ML) technologies have revolutionized almost all developed 

sectors, including healthcare, finance, transportation, e-commerce, etc. The most complex models to date of any kind 

are being embedded in the operational infrastructure of organizations, and there is an increasing ability to understand, 

debug, and even trust these systems. Until recent technological advances, system health and reliability were 

maintained using monitoring practices that had highly deterministic system behaviors that produced predictable 

outputs under consistent inputs. However, AI and ML systems are less predictable. Instead, they typically display 

nondeterministic behaviors due to stochastic processes in training, how probabilistic inference is performed, failed 

and adapting datasets, and the use of adaptive algorithms. Traditional observability practices are insufficient to build 

and maintain the reliability, interpretability, and robustness of AI/ML workloads due to these characteristics [1]. 

While monitoring merely observes the system from the outside, observability consists of the ability to infer the internal 

state of the system from its external outputs. For nondeterministic workloads, observability is required to not just 

include metrics like CPU Usage and Memory Allocation but also include the model accuracy, data drift, feature 

importance, and real-time decision logic. This work investigates the evolving realm of observability in AI/ML systems 

in light of the issues of non-determinism and how such problems must be handled. The discussion touches on how 

real-world use cases and best practices make use of current tooling, through the analysis of use cases and today’s 
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tooling, to uncover and provide a thorough understanding of how organizations can increase trust and accountability 

in AI/ML systems via increased observability. 

Understanding Non-Deterministic AI/ML Systems 

One major challenge in observability for AI and machine learning (ML) systems lies in the fact that observability for 

AI and machine learning (ML) systems is inherently nondeterministic. AI/ML systems are different in that their 

‘inputs’ do not always lead to consistent outputs as you might expect in traditional deterministic systems. Various 

factors give rise to this nondeterminism. In training, stochastic processes, like Stochastic Gradient Descent (SGD), 

add randomness for better generalization. Dropout layers, sampling methods, and randomized decision paths, in 

particular, may be used in inference processes of ensemble or Bayesian models so that the resulting outputs vary. 

Continuous learning systems, on the other hand, in the production setting may retrain the models from real-time data, 

but there may be no version control or clear traceability. Also, deployment in a distributed environment further 

introduces uncertainty, as asynchronous updates, race conditions, and even infrastructure inconsistencies can change 

the behavior [2]. 

Although these traits help to be flexible and for learning new behaviors, they make it harder to trace or understand 

how the model behaves. One incorrect output could not have a consistent pattern to it and may just be due to a shift 

in the data, poor quality of input data, or previously unseen cases. For instance, a reduction in model accuracy may be 

the result of a silent data distribution drift rather than a technical fault. The complexity makes traditional observability 

tools (e.g., CPU usage or error log) insufficient. Instead, effective observability in such environments requires 

knowledge of system behaviors in an ambient, context-aware framework that includes data quality, model logic, 

external dependencies, and temporal dynamics. Only then can teams fully control AI/ML system performance in ever-

changing, real-world conditions and monitor, diagnose, and improve performance [3]. 

Limitations of Traditional Monitoring for AI/ML Workloads 

For infrastructure observability, traditional monitoring tools, including Nagios, Prometheus, and New Relic, have 

taken their place for a long time. These metrics are low-level and are used by them to perform tracking of CPU 

utilization, memory consumption, disk I/O, network traffic, and system uptime. Such indicators are indispensable for 

keeping servers, containers, and applications operationally healthy. But these tools are lacking when it comes to using 

them for AI and ML workloads to gain insights to determine model performance, fairness, or decision quality. 

We operate at a higher abstraction layer, and success is not only about uptime and latency (although these are important 

in their own right) but about how accurately and reliably the models that machine learning systems leverage perform 

for the actual tasks they have been charged with performing. While a model could seem fully functional, it might still 

be degrading in computing and performing badly. Model drift, data distribution shift, or the emergence of biases can 

lead to this. Because these problems are mostly invisible to regular monitoring setups (i.e., setups without semantic 

understanding necessary to judge guess correctness, data quality, or feature behavior), they are encountered often. 

Also, AI/ML pipelines contain multiple asynchronous components of data ingestion, preprocessing, training, 

validation, inference, and retraining continuously. Also, these stages cover several tools and systems that often involve 

external or dynamic data sources. Such a thing as a mislabeled training sample or a broken feature transformation will 

not generate any alerts in standard logs or metrics, but can very much affect the model outcome. In the production 

environment, such a disconnect can be a big risk, as unchecked problems can do irreparable damage to products due 

to flawed decision-making [4]. 

ML systems need domain-specific observational methods to go beyond system metrics, which guarantees effective 

monitoring. Observability requires model-specific indicators, including feature drift assessments along with label drift 

indicators, as well as prediction reliability indices and class distribution monitoring and explanations to discover AI 

pipeline issues promptly. 

Core Components of Observability in AI/ML Systems 

A full-scale method combining various levels of observation must replace standard infrastructure measurements to 

handle observability in non-deterministic AI/ML systems. System performance tracking and diagnosis and 

enhancement require observability, which consolidates information from data quality and model behavior along with 

system infrastructure and user interactions. The total system health and adaptive capacity emerge from collaborated 

components, which allow tracking emerging problems before they occur [5]. 
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Image 1: AI/ML Observability Architecture Diagram [6] 

 

Data Quality Monitoring 

Data quality monitoring represents the fundamental starting point for observability within AI/ML systems’ 

infrastructure. Machine learning models heavily depend on their processing data; thus, maintaining quality data 

integrity remains essential. System checks for real-time data validation should verify the completion of values and 

eliminate unexpected null entries, as well as look out for outliers and violations of schemas while detecting 

inconsistent encoding patterns and sampling inconsistencies. Observable systems require live statistical property 

checks for mean values and variance measurements alongside correlation analysis for spotting deviations in feature 

data distributions and data drift occurrences. Machine-generated alert systems identify upstream data problems prior 

to their impact on model predictions by detecting these property deviations [7]. 

Feature Drift and Model Performance Tracking 

The observability system requires detecting feature drift and continuously monitoring performance as a crucial 

element. When systems rely on user-generated or external data within dynamic environments, the features that 

constitute their inputs tend to transform with the passage of time. Tools need to implement Population Stability Index 

(PSI), Kullback–Leibler divergence (KLD), and Jensen–Shannon distance (JSD) performance metrics to evaluate 

feature drift identically. The monitoring process for real-time performance analysis needs to incorporate precision and 

recall along with the F1-score, area under the curve (AUC), and calibration error data. The absence or delay of ground 

truth labels can be monitored through surrogate indicators that include prediction entropy along with confidence scores 

and model output variance, which detect potential performance degradation [8].  

Model Explainability and Debugging 

Model complexity demands a clear decision rationale for both accountability needs and trust establishment in the 

system. Model decision deconstruction becomes possible through SHAP (Shapley Additive explanations) combined 

with LIME (Local Interpretable Model-agnostic Explanations), which reveals how components of input data affect 

resulting outputs. Observability at this level helps data scientists locate hidden biases as well as discover incorrect 

logic while it enables effective communication with stakeholders. 

Cross-Service Observability and Lineage Tracking 

The contemporary ML systems integrate models within bigger distributed systems. A tracking system measures 

communication across various system elements, including data pipelines, along with feature stores, model servers, 

and API infrastructure. OpenTelemetry provides distributed tracing as a tool, while MLflow and DVC enable data and 

model versioning to provide traceability and reproductive capabilities, as well as efficient negative scenario rollback 
[9]. 
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Table 1: Metrics for Monitoring AI/ML Systems 

It summarizes key metric types used to monitor AI/ML systems, focusing on performance, data integrity, 

confidence, and operational efficiency. 

Metric Type Description Purpose Example Metric 

Model 

Performance 

Metrics 

Metrics that track how well the 

model is performing over time. 

Helps detect model drift 

and assess model 

accuracy. 

Precision, Recall, F1-

Score, AUC-ROC 

Feature Drift 

Metrics 

Metrics that measure shifts in 

input data distributions. 

Identifies when input 

features deviate from the 

training data. 

Population Stability Index 

(PSI), Jensen–Shannon 

Divergence 

Prediction 

Confidence 

Measures the uncertainty in 

model predictions. 

Provides insights into 

model confidence and 

potential for errors. 

Prediction entropy, Model 

Confidence Variance 

Data Quality 

Metrics 

Metrics that track the integrity 

and consistency of the input 

data. 

Ensures that the data used 

for training and inference 

is valid. 

Missing Values Rate, Data 

Completeness Score 

Latency and 

Throughput 

Metrics related to the time taken 

for predictions and the volume 

of requests processed. 

Monitors the operational 

efficiency of the system. 

Response Time, Prediction 

Volume 

 

Challenges in Implementing Observability for Non-Deterministic Workloads 

The implementation of observability presents substantial technical, operational, and ethical obstacles for controlling 

systems powered by AI or machine learning, even though these components serve as essential management tools for 

nondeterministic systems. The hurdles preventing observability arise because systems demonstrate a complex nature 

as well as due to data restrictions, infrastructure limitations, and compliance requirements. 

 

 
Image 2: Model Drift Over Time (Graphical Representation) [10] 
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Real-Time Model Drift Detection 

The major obstacle in practice involves identifying model drift while it happens in real time. Model drift differs from 

typical system failures because the symptoms include predictive performance degradation in place of crashes or 

performance issues. The data environment changes over time, so the model based on previous data points fails to 

correctly predict new inputs. The process of identifying drift requires active statistical checks between current inputs 

and training data distributions with access to ground truth labels needed for outcome evaluations. Real-world 

applications present challenges with these labels since they encounter delays and incompleteness as well as lack of 

availability, particularly within healthcare and finance domains and recommendation systems. When teams lack access 

to ground truth feedback, they must use prediction entropy and confidence intervals as proxies, but these indicators 

sometimes produce inaccurate results regarding performance issues [11]. 

Data Privacy and Regulatory Compliance 

The practice of observability requires data capture along with the logging of model inputs and outputs and intermediate 

feature data while handling both personal information and other sensitive data categories. GDPR in Europe and the 

CCPA in the United States, together with other similar state regulations, demand rigorous limitations on data handling, 

including collection and usage activities. The requirement for visibility creates opposition with regulatory compliance 

guidelines. Observability frameworks need to adopt privacy-preserving methods such as anonymized data, aggregated 

data, redaction, and differential privacy protection to reduce data privacy risks. The implementation of privacy-

preserving techniques leads to increased framework complexity and decreases the level of both the observable details 

and the accuracy that emerges from observability pipelines. 

Resource Constraints and Latency Overhead 

When implementing observability at scale, it leads to significant non-subtle resource utilization among computing 

resources and storage systems. The operations of data pipeline monitoring combined with drift metric calculation and 

SHAP or LIME explanation generation, together with prediction history storage, require measurable amounts of CPU 

time and memory increases along with added latency. Additional computations for production workflows at critical 

speeds, such as fraud discovery and autonomous systems and recommendation platforms, reduce system latency, 

which harms user engagement and product stability. Organizations can address this situation through different 

approaches that consist of sampling methods combined with asynchronous monitoring technologies and multiple alert 

levels for efficient resource allocation [12]. 

Tooling Fragmentation and Integration Complexity 

The development of the AI observability toolset remains ongoing as different monitoring components, such as 

Prometheus metrics and Arize AI model tracking, WhyLabs data profiling, and AI drift detection, operate 

independently from each other. The diverse set of requirements between different monitoring tools creates difficulties 

for integrating their APIs, data formats, logging schemas, and visualization interfaces into a single observability 

framework. The absence of standardized practices causes project teams to devote extensive work to piecing 

components together and maintaining data coherence between tools while creating effective monitoring dashboards 

and alarms. 

The indisputable value of observability for managing non-deterministic AI/ML systems demands careful evaluation 

of trade-offs together with compliance requirements and technical limitations, as well as ecosystem fragmentation, to 

achieve successful implementation. Trustworthy and transparent AI systems, together with their resilience, depend 

heavily on addressing these mentioned challenges [13]. 

 

Table 2: Challenges in Implementing Observability for Non-Deterministic AI/ML Workloads 

It outlines key challenges in establishing observability for non-deterministic AI/ML workloads, including issues 

with drift detection, data privacy, performance trade-offs, and tooling fragmentation. 

Challenge Description Impact on Observability 

Model Drift Detection Detecting gradual performance 

degradation in models over time. 

Difficult to detect without labeled data, 

making it harder to proactively address. 
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Data Privacy and 

Security 

Observability requires logging data 

that may include sensitive user 

information. 

Compliance with regulations (GDPR) 

requires extra precautions, impacting 

visibility. 

Resource Constraints 

and Latency 

Continuous monitoring and drift 

detection may slow down inference 

pipelines. 

Potential impact on real-time inference, 

requiring trade-offs between visibility and 

speed. 

Tooling Fragmentation Multiple observability tools often do 

not integrate seamlessly. 

Integration and alignment of different tools 

can require significant effort and resources. 

 

Tooling Ecosystem for AI/ML Observability 

Business needs for robust AI/ML observability tools emerged to tackle the rising complexity of ML systems operating 

in unpredictable production environments. The behavior of AI/ML systems goes beyond conventional software since 

they generate unpredictable results from data dependencies alongside model drifts, probabilistic predictions, and the 

need for constant model retraining. Observability within ML systems needs to include three main aspects: system 

performance measurements alongside data quality evaluation and model conduct assessment and a history tracking 

capability [14]. 

Infrastructure-Level Observability Tools 

Below the observability stack is where traditionally infrastructure monitoring tools such as Prometheus and Grafana 

sit in the vast adoption, collecting and visualizing time-series metrics at the bottom of the observability stack. These 

tools monitor operational indicators like CPU usage, memory consumption, disk I/O, and network latency. They are 

(almost) not ML-specific but are crucial to ensure the survival and availability of ML systems and services. Custom 

exporters can be used to extend Prometheus and to track metrics like inference latency, throughput, prediction volume, 

and failure rates specific to ML. And subsequently, Grafana allows you to create custom dashboards that show your 

metrics over time and gives your teams a high-level view of their deployed systems. 

ML-Specific Observability Platforms 

A new generation of observability platforms has come up to overcome machine learning nuances. Arize AI is a top-

performing ML observability tool built from commercial needs, so it is designed to solve your requirements. This 

gives end-to-end visibility into deployed models with monitoring of Accuracy, precision, recall, and AUC. Built in 

with its ability to detect model drift, data drift, and bias, Arize also excels in real-time alerting and root cause analysis. 

It is highly scalable, supports multiple models across environments, and is integrated with common MLOps pipelines 
[15]. 

Fiddler AI is another relevant platform aimed at model explainability, fairness, and traceability. By exposing feature-

level attributions with explainability techniques such as SHAP values, Fiddler allows practices to provide us with an 

insight into why a model would make such a prediction. This is especially applicable in regulation industries where 

arguing and understanding model decisions is critical. Finally, Fiddler comes with batch and real-time inference 

environments, thus providing clarification to all prediction lifecycles. 

There are also open-source alternatives that have gained popularity because they are flexible and cheap. WhyLabs, 

built around the Whylogs library, offers ways to quietly but confidentially log datasets and model outputs. Whylogs 

captures statistical summaries and metadata that can be used to detect anomalies, monitor feature distributions, and 

flag data drift. They have designed the solution for large-scale production and privacy first, which makes it suitable 

for applications like finance and healthcare due to its ability to work with sensitive information [16]. 

Just like Evidently, AI is an open-source, user-friendly tool to generate visual dashboards and interactive reports on 

features, labels, data quality metrics, and model performance over time. Its no-code interface provides data scientists 

and ML engineers the ability to plug their model inputs and outputs to get detailed analysis with no deep integration 

to the external platform. Specifically, it is especially helpful during the validation, deployment, and post-deployment 

phases of the ML lifecycle. 
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Experiment Tracking and Reproducibility Tools 

For observability during the whole ML life cycle, we also need tools like experiment tracking, model versioning, and 

reproducibility. It is a widely used open-source platform that allows teams to monitor experiments, store model 

artifacts, and manage lifecycle stages like training, staging, and production. It also works with the usual ML libraries 

and deployment tools seamlessly and provides observability from development to deployment [17]. 

As with Git, DVC (Data Version Control) manages datasets and training pipelines as versioned artifacts using the 

same facilities that Git provides to manage code. Proper reproducibility of experiments ensures collaboration among 

team members and facilitates the standardization of experiments to be carried out in the future. 

Data Lineage and Pipeline Transparency 

At last, the application of data lineage tools like Amundsen and OpenLineage strengthens the transparency in AI 

systems. These platforms offer platforms for tracing data in the flow of complex pipelines, which helps in deciding 

the places of data origin, what is transformed, and to which models it goes. Audit, debug, and comply with regulation, 

especially for industries that need strict data governance and require this visibility [18]. 

Overall, the area of observability for AI / ML is quite dynamic, and there are many different tools in the ecosystem. 

With the help of the correct set of infrastructure-level tools, model-specific platforms, open-source libraries, and 

lineage tracking systems, these organizations can build end-to-end observability stacks as per their ML operations. In 

addition to increasing system reliability, these tools help to increase trust, accountability, and performance of AI-

driven decision-making. 

Table 3: Common Observability Tools for AI/ML Systems 

It presents widely used tools for AI/ML observability, covering monitoring, visualization, explainability, and 

model tracking to support reliable and interpretable system performance. 

Tool Type Key Features Use Case 

Prometheus Infrastructure 

Monitoring 

Collects time-series data on system 

performance. 

Tracks infrastructure metrics like 

CPU, memory, and uptime. 

Grafana Data Visualization Open-source tool for visualizing 

time-series data from Prometheus. 

Creates dashboards for real-time 

visualization of model 

performance. 

Arize AI AI/ML Observability 

Platform 

Real-time monitoring of model 

performance, drift, and bias. 

Detects model drift, monitors 

prediction quality, and identifies 

biases. 

Fiddler AI Model Explainability 

& Fairness 

Provides explainability, fairness 

checks, and model debugging. 

Helps with debugging and 

ensuring model fairness during 

production. 

MLflow Model Tracking & 

Versioning 

Tracks experiments, model 

versions, and provides 

reproducibility. 

Ensures traceability of ML model 

versions and parameters. 

 

Real-World Case Studies 

As a result, a number of technology companies who are leading the pack have developed bespoke solutions and 

platforms that integrate tightly in observability across the ML lifecycle to address the challenges that arise with 

observability in nondeterministic AI/ML systems. Finally, these real-world implementations provide insights into the 

ability to approach robust monitoring, data lineage, and explainability at scale. 

Uber: Michelangelo Platform 

Michelangelo is Uber’s complete ML platform, which was built to be one of the most comprehensive ML platforms 

in the industry. The observability of every stage of the machine learning pipeline from ingestion of data and feature 

engineering to deployment and retraining is embedded into this platform. Uber uses Kafka streams to continuously 

read the feature data and result from the prediction in order to continuously serve the real-time model behavior insight. 

It monitors all active models and provides metrics like how much latency, accuracy, and prediction volume there are 
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in them. Uber’s airflow dag orchestrates the automated pipeline of anomaly detection pipelines and retrain workflows 

so that Uber can be proactive of model drift or quality data issues. Model metadata, lineage, and usage statistics are 

centralized by Michelangelo to provide better traceability, reproducibility, and accountability on thousands of models 

deployed everywhere on the globe [19]. 

Airbnb: Zipline and Feature Observability 

Airbnb’s main avenue for observability is through its Zipline system, which concerns itself with feature engineering. 

Unlike with many other approaches,s where features can be used in a variety of ad hoc ways, Zipline takes the first-

class view of features. It provides central storage, version control, and drift detection of feature sets. Airbnb engineers 

can also monitor what has changed over time in feature distributions, link them to fluctuations in model performance, 

and establish alerts triggered by a large deviation. The ability to see this level of visibility provides for a fine root 

cause analysis, and if the degradation of performance occurs, early intervention to reduce the time-to-detection and 

resolution by an order of magnitude. 

Netflix: Observability and Experimentation 

Monitoring, explainability, and experimentation are combined by Netflix when it comes to observability. It combines 

model outputs interpretation through tools such as SHAP with A/B testing on the real world to understand what model 

changes cause. To illustrate, teams can see not only the performance metrics, such as click-through rates or 

engagement scores, but also the explanatory factors that are driving those predictions when a recommendation model 

is updated. Through their dual-layered approach, Netflix can validate model updates through business outcomes and 

ensure that improvements align with strategic goals. 

These case studies together demonstrate how observability can be operationalized in this type of complex machine 

learning use case by leveraging automated data pipelines, interpretability tools, and real-time metrics together. 

Best Practices and Recommendations 

The strategic planning and tactical execution of implementing observability in nondeterministic AI/ML systems is 

very important. Since AI/ML systems are a matter of nature, they are very complex to tackle due to dependencies and 

cause the unpredictability of behavior, as well as the variability in the behavior of the system itself. Therefore, it 

becomes necessary for organizations to implement good practices that would facilitate a proper monitoring and 

analysis of these systems. Below are some key recommendations for achieving robust observability in AI/ML 

environments: 

Granular Metadata Logging 

Granular metadata logging is the basis of effective observability. It is crucial to get detailed logs while they pass 

through each stage of the inference request so they can be analyzed post hoc. That includes the form of basic model 

information, e.g., model version, timestamp, and input features, but also the form of prediction metadata: prediction 

confidence, output probabilities, and any associated model parameters. This level of logging allows teams to see when 

an issue first appeared, helps them understand the root cause of performance degradation, spot potential bias, and 

debug to the code and data that influences model behavior [20]. 

Automated Drift Detection 

As their name implies, data drift and model drift are the major problems in nondeterministic AI/ML systems. To track 

perturbations such as changes in the distribution of features and labels with time, automated drift detection on features 

and labels is an essential technique based on statistical techniques. One can use key metrics such as the Population 

Stability Index (PSI) or Kullback-Leibler Divergence for detecting changes in the data characteristics. Teams can 

proactively respond to significant deviations by setting up automated alerts for such deviations so that performance 

degradation goes unnoticed in production or model behavior becomes unexpected. 

Service Level Objectives (SLOs) for ML Models 

SLOs are an essential tool for keeping an eye on the work that is getting fulfilled by ML models to make sure that 

these models are delivering what’s required. Previous SLOs should include clearly defined targets for latency, 

accuracy, drift tolerance, and other such critical performance metrics. Teams can monitor these, as well as traditional 

metrics of infrastructure (e.g., CPU, RAM usage) in a balanced way (Model health and System health). By reviewing 

and revising these SLOs based on the changing business goal and characteristics of the data, these SLOs retain their 

relevance to the objective for which the model was built. 
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Explainability Integration 

Also essential for being able to use model explainability tools residing within observability frameworks is that they 

are embeddable. Some dashboard and alerting system techniques like SHAP (SHapley Additive exPlanations) or 

LIME (Local Interpretable Model-agnostic Explanations) can be woven into the dashboard to help you to understand 

what specific features did predict. Explainability is critical when people have to understand and verify model decisions 

and their justification in high-stakes applications such as healthcare, finance, or autonomous systems [21]. 

Privacy-Aware Observability 

This is important given that the importance of data privacy regulations such as the General Data Protection Regulation 

(GDPR) continues to rise. Data anonymization or differential privacy or other privacy-preserving logging techniques 

are a must, and data minimization and role-based access control are important. As an observation, these practices 

make sure that observability doesn’t disrupt user privacy while also maintaining compliance if such data is involved, 

for example. 

End-to-End Pipeline Tracing 

End-to-end pipeline tracing is required to get a real-life picture of performance for AI/ML systems. OpenTelemetry 

is the solution/tool that helps teams trace the data and predictions across multiple services in a distributed ML service. 

With this end-to-end visibility, we can see where data flows in and out of ingestion, through transformation all the 

way into the predictions given by the model. It also makes it easier to monitor how such model updates affect the 

system as time progresses. 

Table 4: Best Practices for Implementing AI/ML Observability 

It highlights best practices for effective AI/ML observability, emphasizing metadata logging, drift detection, 

performance objectives, and explainability to enhance reliability and transparency. 

Best Practice Description Benefit 

Granular Metadata 

Logging 

Capture detailed information such as model 

version, input features, and prediction metadata. 

Enables deeper post-hoc analysis and 

helps track model behavior over 

time. 

Automated Drift 

Detection 

Use statistical methods to monitor feature and 

label distributions and trigger alerts for 

significant changes. 

Helps detect issues early and 

improves model stability. 

Service Level 

Objectives (SLOs) 

Set targets for model latency, accuracy, and 

drift tolerance, and monitor them alongside 

infrastructure metrics. 

Ensures models meet performance 

standards and maintain reliability. 

Explainability 

Integration 

Integrate tools like SHAP and LIME to provide 

insights into model decisions. 

Improves accountability, debugging, 

and trust in model decisions. 

 

Future Directions in Observability 

Observability itself will evolve as more and more autonomous and adaptive AI systems come online. Causal 

observability is one emerging area that expands from correlation-based monitoring to discover causal relationships 

between the system inputs and behaviors. This would make it possible for more accurate root cause analysis and 

intervention strategies. 

Another area where machine learning is promising is the use of artificial intelligence to improve observability systems. 

For instance, anomaly detection algorithms can find unusual patterns in logs or metrics, clustering techniques can 

group similar incidents, and reinforcement learning can optimize alerting policies [22]. 

Similar attention is being paid to federated observability, especially when deployed models are spread across 

decentralized devices. For example, in this case, safety comes with secure aggregation protocols as well as privacy-

preserving metrics. 

CONCLUSION 

There is no longer luxury in observing AI/ML systems since these systems often exhibit non-deterministic behaviors, 

and it’s mandatory. With more and more importance placed upon their use in decisions, safety, and business processes, 
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the importance and reliability of these systems must be ensured. When the context of observability is high velocity, 

managing observability requires an in-depth, holistic approach encompassing data, model, infrastructure health, and 

user interaction. At the same time, new tools, new culture, and ever-increasing investment in system design are 

required. 

While challenges persist (e.g., in tooling fragmentation and data privacy concerns), the progress in this space is an 

area of hope. Proactive organizations that make investments toward observability are more likely to get insights early 

to detect the issues and improve their model performance, regulate them, or simply build trustworthy AI systems. 

Observability is the system’s mirror and compass it will act as a mirror of system behavior today and a compass for 

responsible development tomorrow. 
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